Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty
Filter
Applied FilterClear all
TargetMol | Tags By Target
  • Endogenous Metabolite
    (100)
  • Apoptosis
    (81)
  • Antibacterial
    (45)
  • Autophagy
    (41)
  • Antioxidant
    (37)
  • COX
    (31)
  • NF-κB
    (30)
  • Antifungal
    (26)
  • Reactive Oxygen Species
    (26)
  • Others
    (582)
Filter
Search Result
Results for "

3,4-dihydroxyphenylacetic acid-d5

" in TargetMol Product Catalog
  • Inhibitors & Agonists
    1280
    TargetMol | Inhibitors_Agonists
  • Compound Libraries
    4
    TargetMol | Compound_Libraries
  • Peptide Products
    21
    TargetMol | Peptide_Products
  • Dye Reagents
    14
    TargetMol | Dye_Reagents
  • PROTAC Products
    6
    TargetMol | PROTAC
  • Natural Products
    861
    TargetMol | Natural_Products
  • Reagent Kits
    2
    TargetMol | Reagent_Kits
  • Recombinant Protein
    54
    TargetMol | Recombinant_Protein
  • Isotope Products
    18
    TargetMol | Isotope_Products
  • Antibody Products
    27
    TargetMol | Antibody_Products
  • Disease Modeling
    6
    TargetMol | Disease_Modeling_Products
  • 18
    TargetMol | Inhibitors_Agonists
3,4-Dihydroxyphenylacetic Acid-d5
TMIH-004360696-39-1
3,4-Dihydroxyphenylacetic Acid-d5 is a deuterated compound of 3,4-Dihydroxyphenylacetic Acid.
  • Inquiry Price
7-10 days
Size
QTY
13C15-Nivalenol
13C15-Nivalenol
T35513911392-40-0
13C15-Nivalenol is intended for use as an internal standard for the quantification of nivalenol by GC- or LC-MS. Nivalenol is a trichothecene mycotoxin that has been found inFusarium.1It is lethal to mice (LD50= 6.9 mg/kg).2Nivalenol (5, 10, and 15 mg/kg) also induces thymic, splenic, and Peyer's patch cell apoptosis in mice.3 1.Yang, Z., Concannon, J., Ng, K.S., et al.Tetrandrine identified in a small molecule screen to activate mesenchymal stem cells for enhanced immunomodulationSci. Rep.630263(2016) 2.Yoshizawa, T., and Morooka, N.Studies on the toxic substances in the infected cereals (part 3): Acute toxicities of new trichothecene mycotoxins: Deoxynivalenol and its monoacetateJ. Food Hyg.15(4)261-269(1974) 3.Poapolathep, A., Ohtsuka, R., Kiatipattanasakul, W., et al.Nivalenol-induced apoptosis in thymus, spleen and Peyer's patches of miceExp. Toxicol. Pathol.53(6)441-446(2002)
  • Inquiry Price
Size
QTY
4-deoxy Nivalenol-13C15
4-deoxy Nivalenol-13C15
T35517911392-36-4
4-deoxy Nivalenol-13C15is intended for use as an internal standard for the quantification of 4-deoxy nivalenol by GC- or LC-MS. 4-deoxy Nivalenol is a trichothecene mycotoxin that has been found inFusarium.1It binds to eukaryotic ribosomes and inhibits protein synthesis in mice when administered at doses ranging from 5 to 25 mg/kg. 4-deoxy Nivalenol (0.1 and 0.2 mg/kg) induces emesis in pigs and decreases feed consumption in pigs when administered at a dose of 40 ppb in the diet.2It induces lethality in mice (LD50= 46-78 mg/kg).34-deoxy Nivalenol has been found inF. graminearum-infected cereal grains such as wheat, barley, and corn. 1.Pestka, J.J., and Smolinski, A.T.Deoxynivalenol: Toxicology and potential effects on humansJ.Toxicol.Environ.Health B.Crit.Rev.8(1)39-69(2005) 2.Forsyth, D.M., Yoshizawa, T., Morooka, N., et al.Emetic and refusal activity of deoxynivalenol to swineAppl. Environ. Microbiol.34(5)547-552(1977) 3.Pestka, J.J.Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevanceArch. Toxicol.84(9)663-679(2010)
  • Inquiry Price
Size
QTY
Guanfacine-13C,15N3
Guanfacine-13C,15N3
T355911189924-28-4
Guanfacine-13C,15N3is intended for us as an internal standard for the quantification of guanfacine by GC- or LC-MS. Guanfacine is an α2-adrenergic receptor (α2-AR) agonist with Kivalues of 93, 1,380, and 3,890 nM for α2A-, α2B-, and α2C-ARs, respectively, in a radioligand binding assay.1It has EC50values of 52, 288, and 602 nM for α2A-, α2B-, and α2C-ARs, respectively, for stimulated [35S]GTPγS binding. It also binds to imidazoline receptor 1 (Ki= 19 nM in a radioligand binding assay).2Guanfacine (0.3-5 mg/kg) binds to adrenergic receptors in the central nervous system and lowers blood pressure in hypertensive rats in a dose-dependent manner.3It also improves spatial working memory deficits induced by hypobaric hypoxia in rats.4Formulations containing guanfacine are used in the treatment of high blood pressure and attention deficit hyperactivity disorder (ADHD). 1.Jasper, J.R., Lesnick, J.D., Chang, L.K., et al.Ligand efficacy and potency at recombinant α2 adrenergic receptors: Agonist-mediated [35S]GTPγS bindingBiochem. Pharmacol.55(7)1035-1043(1998) 2.Nikolic, K., Filipic, S., and Agbaba, D.QSAR study of imidazoline antihypertensive drugsBioorg. Med. Chem.16(15)7134-7140(2008) 3.Scholtysik, G.Pharmacology of guanfacineBr. J. Clin. Pharmacol.10(Suppl 1)21S-24S(1980) 4.Kauser, H., Sahu, S., Kumar, S., et al.Guanfacine is an effective countermeasure for hypobaric hypoxia-induced cognitive declineNeuroscience254110-119(2013)
  • Inquiry Price
Size
QTY
2-deoxy-D-Glucose-13C6
2-deoxy-D-Glucose-13C6
T35683201612-55-7
2-deoxy-D-Glucose-13C6is intended for use as an internal standard for the quantification of 2-deoxy-D-glucose by GC- or LC-MS. 2-deoxy-D-Glucose is a glucose antimetabolite and an inhibitor of glycolysis.1,2It inhibits hexokinase, the enzyme that converts glucose to glucose-6-phosphate, as well as phosphoglucose isomerase, the enzyme that converts glucose-6-phosphate to fructose-6-phosphate.32-deoxy-D-Glucose (16 mM) induces apoptosis in SK-BR-3 cells, as well as inhibits the growth of 143B osteosarcoma cells cultured under hypoxic conditions when used at a concentration of 2 mg ml.4,5In vivo, 2-deoxy-D-glucose (500 mg kg) reduces tumor growth in 143B osteosarcoma and MV522 non-small cell lung cancer mouse xenograft models when used alone or in combination with doxorubicin or paclitaxel .6 1.Kang, H.T., and Hwang, E.S.2-Deoxyglucose: An anticancer and antiviral therapeutic, but not any more a low glucose mimeticLife Sci.78(12)1392-1399(2006) 2.Aft, R.L., Zhang, F.W., and Gius, D.Evaluation of 2-deoxy-D-glucose as a chemotherapeutic agent: Mechanism of cell deathBr. J. Cancer87(7)805-812(2002) 3.Ralser, M., Wamelink, M.M., Struys, E.A., et al.A catabolic block does not sufficiently explain how 2-deoxy-D-glucose inhibits cell growthProc. Natl. Acad. Sci. USA105(46)17807-17811(2008) 4.Liu, H., Savaraj, N., Priebe, W., et al.Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: A strategy for solid tumor therapy (Model C)Biochem. Pharmacol.64(12)1745-1751(2002) 5.Zhang, X.D., Deslandes, E., Villedieu, M., et al.Effect of 2-deoxy-D-glucose on various malignant cell lines in vitroAnticancer Res.26(5A)3561-3566(2006) 6.Maschek, G., Savaraj, N., Priebe, W., et al.2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivoCancer Res.64(1)31-34(2004)
  • Inquiry Price
Size
QTY
Oleic Acid-13C
T3569582005-44-5
Oleic acid-13C is intended for use as an internal standard for the quantification of oleic acid by GC- or LC-MS. Oleic acid is a monounsaturated fatty acid and a major component of membrane phospholipids that has been found in human plasma, cell membranes, and adipose tissue.1,2 It contributes approximately 17% of the total fatty acids esterified to phosphatidylcholine, the major phospholipid class in porcine platelets.1 Oleic acid inhibits collagen-stimulated platelet aggregation by approximately 90% when used at a concentration of 10 μg/ml. It also inhibits fMLF-induced neutrophil aggregation and degranulation by 55 and 68%, respectively, when used at a concentration of 5 μM, similar to arachidonic acid .3 Oleic acid (60 μM) induces release of intracellular calcium in human platelets.4
    7-10 days
    Inquiry
    HT-2 Toxin-13C22
    HT-2 Toxin-13C22
    T357751486469-92-4
    HT-2 toxin-13C22is intended for use as an internal standard for the quantification of HT-2 toxin by GC- or LC-MS. HT-2 toxin is a type A trichothecene mycotoxin and an active, deacetylated metabolite of the trichothecene mycotoxin T-2 toxin .1,2Like T-2 toxin, HT-2 toxin inhibits protein synthesis and cell proliferation in plants.2HT-2 toxin also reduces viability of HepG2, A549, HEp-2, Caco-2, A-204, U937, Jurkat, and RPMI-8226 cancer cells with IC50values ranging from 3.1 to 23 ng/ml and human umbilical vein endothelial cells with an IC50value of 56.4 ng/ml.1It induces oxidative stress, DNA damage, and autophagy in, as well as halts the development of, cultured mouse embryos when used at a concentration of 10 nM.3HT-2 toxin has been found in cereal grains and food products.4,5 1.Nielsen, C., Casteel, M., Didier, A., et al.Trichothecene-induced cytotoxicity on human cell linesMycotoxin Res.25(2)77-84(2009) 2.Nathanail, A.V., Varga, E., Meng-Reiterer, J., et al.Metabolism of the fusarium mycotoxins T-2 toxin and HT-2 toxin in wheatJ. Agric. Food Chem.63(35)7862-7872(2015) 3.Zhang, L., Li, L., Xu, J., et al.HT-2 toxin exposure induces mitochondria dysfunction and DNA damage during mouse early embryo developmentReprod. Toxicol.85104-109(2019) 4.Langseth, W., and Rundberget, T.The occurrence of HT-2 toxin and other trichothecenes in Norwegian cerealsMycopathologia147(3)157-165(1999) 5.Al-Taher, F., Cappozzo, J., Zweigenbaum, J., et al.Detection and quantitation of mycotoxins in infant cereals in the U.S. market by LC-MS/MS using a stable isotope dilution assayFood Control72(Part A)27-35(2017)
    • Inquiry Price
    Size
    QTY
    Palmitic acid-1-13C
    T3578957677-53-9
    Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.1 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.2 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.2,3,4,5,6 |1. Santos, M.J., López-Jurado, M., Llopis, J., et al. Influence of dietary supplementation with fish oil on plasma fatty acid composition in coronary heart disease patients. Ann. Nutr. Metab. 39(1), 52-62 (1995).|2. Lee, J.Y., Sohn, K.H., Rhee, S.H., et al. Saturated fatty acids, but not unsaturated fatty acids, induced the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J. Biol. Chem. 276(20), 16683-16689 (2001).|3. Dietzen, D.J., Hastings, W.R., and Lublin, D.M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270(12), 6838-6842 (1995).|4. Robinson, L.J., and Michel, T. Mutagenesis of palmitoylation sites in endothelial nitric oxide synthase identifies a novel motif for dual acylation and subcellular targeting. Proc. Nat. Acad. Sci. USA 92(25), 11776-11780 (1995).|5. Topinka, J.R., and Bredt, D.S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 20(1), 125-134 (1998).|6. Miggin, S.M., Lawler, O.A., and Kinsella, B.T. Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J. Biol. Chem. 278(9), 6947-6958 (2003).
    • Inquiry Price
    7-10 days
    Size
    QTY
    Palmitic acid-13C
    T35791287100-87-2
    Palmitic acid-13C is intended for use as an internal standard for the quantification of palmitic acid by GC- or LC-MS. Palmitic acid-13C contains 13C at the C2 position and has been used in the study of free fatty acid incorporation into phospholipid fatty acids in soil microbes.1 Palmitic acid is a 16-carbon saturated fatty acid. It comprises approximately 25% of human total plasma lipids.2 It increases protein levels of COX-2 in RAW 264.7 cells when used at a concentration of 75 μM.3 Palmitic acid is involved in the acylation of proteins to anchor membrane-bound proteins to the lipid bilayer.3,4,5,6,7 |1. Dippold, M.A., and Kuzyakov, Y. Direct incorporation of fatty acids into microbial phospholipids in soils: Position-specific labeling tells the story. Geochim. Cosmochim. Acta 174(1), 211-221 (2016).|2. Santos, M.J., López-Jurado, M., Llopis, J., et al. Influence of dietary supplementation with fish oil on plasma fatty acid composition in coronary heart disease patients. Ann. Nutr. Metab. 39(1), 52-62 (1995).|3. Lee, J.Y., Sohn, K.H., Rhee, S.H., et al. Saturated fatty acids, but not unsaturated fatty acids, induced the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J. Biol. Chem. 276(20), 16683-16689 (2001).|4. Dietzen, D.J., Hastings, W.R., and Lublin, D.M. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J. Biol. Chem. 270(12), 6838-6842 (1995).|5. Robinson, L.J., and Michel, T. Mutagenesis of palmitoylation sites in endothelial nitric oxide synthase identifies a novel motif for dual acylation and subcellular targeting. Proc. Nat. Acad. Sci. USA 92(25), 11776-11780 (1995).|6. Topinka, J.R., and Bredt, D.S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron 20(1), 125-134 (1998).|7. Miggin, S.M., Lawler, O.A., and Kinsella, B.T. Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J. Biol. Chem. 278(9), 6947-6958 (2003).
      7-10 days
      Inquiry
      Zonisamide-13C2,15N
      Zonisamide-13C2,15N
      T378471188265-58-8
      Zonisamide-13C2,15N is intended for use as an internal standard for the quantification of zonisamide by GC- or LC-MS. Zonisamide is an antiepileptic agent.1 It selectively inhibits the repeated firing of sodium channels (IC50 = 2 μg/ml) in mouse embryo spinal cord neurons and inhibits spontaneous channel firing when used at concentrations greater than 10 μg/ml.2 In rat cerebral cortex neurons, zonisamide (1-1,000 μM) inhibits T-type calcium channels with a maximum reduction of 60% of the calcium current.3 Zonisamide inhibits H. pylori recombinant carbonic anhydrase (CA) and the human CA isoforms I, II, and V with Ki values of 218, 56, 35, and 21 nM, respectively.4,5 In mice, it has anticonvulsant activity against maximal electroshock seizure (MES) and pentylenetetrazole-induced maximal, but not minimal, seizures (ED50s = 19.6, 9.3, and >500 mg/kg, respectively). Zonisamide (40 mg/kg, p.o.) prevents MPTP-induced decreases in the levels of dopamine , but not homovanillic acid or dihydroxyphenyl acetic acid , and increases MPTP-induced decreases in the dopamine turnover rate in mouse striatum in a model of Parkinson's disease.6 Formulations containing zonisamide have been used in the treatment of partial seizures in adults with epilepsy. |1. Masuda, Y., Ishizaki, M., and Shimizu, M. Zonisamide: Pharmacology and clinical efficacy in epilepsy. CNS Drug Rev. 4(4), 341-360 (1998).|2. Rock, D.M., Macdonald, R.L., and Taylor, C.P. Blockade of sustained repetitive action potentials in cultured spinal cord neurons by zonisamide (AD 810, CI 912), a novel anticonvulsant. Epilepsy Res. 3(2), 138-143 (1989).|3. Suzuki, S., Kawakami, K., Nishimura, S., et al. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res. 12(1), 21-27 (1992).|4. Nishimori, I., Vullo, D., Minakuchi, T., et al. Carbonic anhydrase inhibitors: Cloning and sulfonamide inhibition studies of a carboxyterminal truncated α-carbonic anhydrase from Helicobacter pylori. Bioorg. Med. Chem. Lett. 16(8), 2182-2188 (2006).|5. De Simone, G., Di Fiore, A., Menchise, V., et al. Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: Solution and X-ray crystallographic studies. Bioorg. Med. Chem. Lett. 15(9), 2315-2320 (2005).|6. Yabe, H., Choudhury, M.E., Kubo, M., et al. Zonisamide increases dopamine turnover in the striatum of mice and common marmosets treated with MPTP. J. Pharmacol. Sci. 110(1), 64-68 (2009).
      • Inquiry Price
      Size
      QTY
      Ribavirin-13C5
      Ribavirin-13C5
      T382971646818-35-0
      Ribavirin-13C5is intended for use as an internal standard for the quantification of ribavirin by GC- or LC-MS. Ribavirin is an antiviral guanosine nucleoside analog.1,2Upon entry into cells, ribavirin is metabolized to an active triphosphate form that induces viral RNA chain termination and inhibits viral polymerases. It reduces replication in a panel of seven RNA and four DNA viruses in Vero cells (EC50s = 2-95 μg/ml).3Ribavirin also reduces replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero cells (EC50= 109.5 μM).4Aerosol administration of ribavirin (30 mg/kg) reduces mortality in a mouse model of influenza A infection.5Formulations containing ribavirin have been used in the treatment of respiratory syncytial virus (RSV), hepatitis C virus (HCV), and viral hemorrhagic fevers. 1.Gilbert, B.E., and Knight, V.Biochemistry and clinical applications of ribavirinAntimicrob. Agents Chemother.30(2)201-205(1986) 2.Gordon, C.J., Tchesnokov, E.P., Woolner, E., et al.Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potencyJ. Biol. Chem.295(20)6785-6797(2020) 3.Kirsi, J.J., North, J.A., McKernan, P.A., et al.Broad-spectrum antiviral activity of 2-β-D-ribofuranosylselenazole-4-carboxamide, a new antiviral agentAntimicrob. Agents Chemother.24(3)353-361(1983) 4.Wang, M., Cao, R., Zhang, L., et al.Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitroCell Res.30(3)269-271(2020) 5.Wilson, S.Z., Knight, V., Wyde, P.R., et al.Amantadine and ribavirin aerosol treatment of influenza A and B infection in miceAntimicrob. Agents Chemother.17(4)642-648(1980)
      • Inquiry Price
      7-10 days
      Size
      QTY
      Stearic acid-18,18,18-d3
      TMID-017862163-39-7
      Stearic acid-18,18,18-d3 is a deuterated compound of Stearic acid. Stearic acid has a CAS number of 57-11-4. 1. Stearic Acid can reduce metastatic tumor burden. 2. Stearic Acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes. 3. Stearic Acid and its derivatives have been used as gelators in food and pharmaceutical gel formulations. 4. Stearic Acid is a potent phosphatase 1B inhibitor, possibly causing an enhancement in the insulin receptor signaling to stimulate glucose uptake into adipocytes. 5. Stearic Acid has the potential to increase dry matter intake and yields of milk and milk components, without affecting conversion of feed to milk, body condition score, or body weight.
      • Inquiry Price
      35 days
      Size
      QTY
      3,4-Difluoro-4'-(cis-4-propylcyclohexyl)biphenyl-d4
      3,4-difluoro-4'-((1r,4s)-4-propylcyclohexyl)-1,1'-biphenyl-2',3',5',6'-d4
      TMIH-0041
      3,4-Difluoro-4'-(cis-4-propylcyclohexyl)biphenyl-d4 is a deuterated compound of 3,4-Difluoro-4'-(cis-4-propylcyclohexyl)biphenyl.
      • Inquiry Price
      7-10 days
      Size
      QTY
      3,4-Difluoro-4'-(trans-4-propylcyclohexyl)biphenyl-d4
      3,4-difluoro-4'-((1s,4r)-4-propylcyclohexyl)-1,1'-biphenyl-2',3',5',6'-d4
      TMIH-0042
      3,4-Difluoro-4'-(trans-4-propylcyclohexyl)biphenyl-d4 is a deuterated compound of 3,4-Difluoro-4'-(trans-4-propylcyclohexyl)biphenyl. 3,4-Difluoro-4'-(trans-4-propylcyclohexyl)biphenyl has a CAS number of 85312-59-0.
      • Inquiry Price
      7-10 days
      Size
      QTY
      Demethoxy Curcumin-d4
      TMIH-0181
      Demethoxy Curcumin-d4 is a deuterated compound of Demethoxy Curcumin. Demethoxy Curcumin has a CAS number of 22608-11-3. 1. Demethoxycurcumin has antioxidant activity. 2. Demethoxycurcumin has anti-inflammatory activity. 3. Demethoxycurcumin has anti-proliferative activity. 4. Demethoxycurcumin has anti-acanthamoebic effect. 5. Demethoxycurcumin is a potential additive natural product in combination with chemotherapeutic agents in drug-resistant cancers. 6. Demethoxycurcumin inhibits energy metabolic and oncogenic signaling pathways through AMPK activation in triple-negative breast cancer cells.
      • Inquiry Price
      7-10 days
      Size
      QTY
      Fingolimod-d4 HCl
      TMIH-02361346604-90-7
      Fingolimod-d4 HCl is a deuterated compound of Fingolimod HCl. Fingolimod HCl has a CAS number of 162359-56-0. Fingolimod, a novel immune modulator, is a sphingosine 1-phosphate (S1P) antagonist (IC50: 0.033 nM in K562 and NK cells).
      • Inquiry Price
      7-10 days
      Size
      QTY
      Nintedanib-13C-d3
      TMIH-03931624587-84-3
      Nintedanib-13C-d3 is the 13C and deuterated compound of Nintedanib. Nintedanib has a CAS number of 656247-17-5. Nintedanib is an inhibitor of the receptor tyrosine kinases VEGFR FGFR PDGFR (IC50s: 13-34 37-610 59 65 nM for VEGFR1-3, FGFR1-4, and PDGFRα β, respectively).
      • Inquiry Price
      7-10 days
      Size
      QTY
      Nintedanib-d8
      TMIJ-03331624587-87-6
      Nintedanib-d8 is a deuterated compound of Nintedanib. Nintedanib has a CAS number of 656247-17-5. Nintedanib is an inhibitor of the receptor tyrosine kinases VEGFR FGFR PDGFR (IC50s: 13-34 37-610 59 65 nM for VEGFR1-3, FGFR1-4, and PDGFRα β, respectively).
      • Inquiry Price
      20 days
      Size
      QTY