Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty
Filter
Applied FilterClear all
TargetMol | Tags By Target
  • Beta Amyloid
    (2)
  • HDAC
    (2)
  • Antifection
    (1)
  • Apoptosis
    (1)
  • Complement System
    (1)
  • Dopamine Receptor
    (1)
  • Epigenetic Reader Domain
    (1)
  • Monoamine Oxidase
    (1)
  • Reactive Oxygen Species
    (1)
  • Others
    (44)
Filter
Search Result
Results for "

pathogenesis

" in TargetMol Product Catalog
  • Inhibitors & Agonists
    60
    TargetMol | Inhibitors_Agonists
  • Compound Libraries
    5
    TargetMol | Compound_Libraries
  • Peptide Products
    13
    TargetMol | Peptide_Products
  • Inhibitory Antibodies
    2
    TargetMol | Inhibitory_Antibodies
  • Dye Reagents
    1
    TargetMol | Dye_Reagents
  • Natural Products
    4
    TargetMol | Natural_Products
  • Recombinant Protein
    82
    TargetMol | Recombinant_Protein
  • Disease Modeling
    2
    TargetMol | Disease_Modeling_Products
  • Cell Research
    5
    TargetMol | Inhibitors_Agonists
Iptacopan hydrochloride
LNP023 hydrochloride, Iptacopan HCl
T91891646321-63-2In house
Iptacopan hydrochloride (LNP023 hydrochloride) is an orally bioavailable, highly potent and highly selective factor B inhibitor with an IC50 of 10 nM. Iptacopan hydrochloride shows direct, reversible, and high-affinity binding to human factor B with a KD of 7.9 nM.
  • Inquiry Price
Size
QTY
TargetMol | Inhibitor Hot
Patamostat mesylate
E-3123 mesylate, E3123 mesylate, E 3123 mesylate
T38521114568-32-0In house
Patamostat mesylate (E-3123) is a potent protease inhibitor with IC50 values of 39 nM for trypsin, 950 nM for plasmin, and 1.9 μM for thrombin. This compound demonstrates promising potential in suppressing the pathogenesis and development of acute pancreatitis.
  • Inquiry Price
Size
QTY
J-147
J147
T19931146963-51-0
J-147 is an experimental drug with reported effects against both Alzheimer's disease and ageing in mouse models of accelerated aging. It is a curcumin derivative and a potent neurogenic and neuroprotective drug candidate initially developed for the treatment of neurodegenerative conditions associated with aging that impacts many pathways implicated in the pathogenesis of diabetic neuropathy.
  • Inquiry Price
Size
QTY
Patamostat
T9670114568-26-2In house
Patamostat (E-3123) is a potent protease inhibitor that effectively inhibits trypsin, plasmin, and thrombin with IC50 values of 39 nM, 950 nM, and 1.9 µM, respectively. Research suggests it might suppress the pathogenesis and development of acute pancreatitis [1] [2].
  • Inquiry Price
1-2 weeks
Size
QTY
Uric acid sodium
T412421198-77-2
Uric acid sodium, scavengers of oxygen radicals, is a potent and common antioxidant that helps maintain stable blood pressure and resist oxidative stress. Uric acid sodium, which removes reactive oxygen species (ROS) such as singlet oxygen and peroxynitrite, has an inhibitory effect on lipid peroxidation and is associated with the pathogenesis of gout joint disease and the formation of calcium oxalate stones.
  • Inquiry Price
7-10 days
Size
QTY
Biotin-β-Amyloid (1-42), human TFA
Biotin-amyloid β-peptide (1-42) (human) TFA
T80035
Biotin-β-Amyloid (1-42), human TFA, also known as Biotin-Amyloid β-Peptide (1-42) (human) TFA, is a biotin-labeled 42-amino acid peptide implicated in the pathogenesis of Alzheimer's disease.
  • Inquiry Price
Size
QTY
β-Amyloid (1-42), human
β-Amyloid (1-42), human, Amyloid β-Peptide (1-42) human
TP1007107761-42-2
β-Amyloid (1-42), human, is a 42-amino acid peptide integral to the pathogenesis of Alzheimer disease.
  • Inquiry Price
Size
QTY
Peroxidase
T195089003-99-0
Peroxidase, found in the roots of horseradish, actively involves in oxidizing reactive oxygen species, innate immunity, hormone biosynthesis, and pathogenesis of several diseases.
  • Inquiry Price
Size
QTY
TargetMol | Inhibitor Sale
Cyrtominetin
T202031519-55-1
Cyrtominetin is an α-hemolysin inhibitor that works by directly binding to α-hemolysin and altering the conformation of its critical Loop region, subsequently inhibiting its lytic activity through a novel mechanism. This characteristic positions Cyrtominetin as a potential therapeutic agent against α-HL-mediated pathogenesis.
  • Inquiry Price
Size
QTY
Sonlicromanol
KH-176,KH 176,KH176
T323921541170-75-5
KH-176 is an effective intracellular REDOX regulator that targets reactive oxygen species, which are important in the pathogenesis of mitochondrial oxidative phosphorylation disorders and may be used to treat mitochondrial diseases.
  • Inquiry Price
1-2 weeks
Size
QTY
Destruxin B2
T3577179386-00-8
Destruxin B2 is a cyclic hexadepsipeptide mycotoxin that has been found in M. anisopliae and has antiviral, insecticidal, and phytotoxic activities.1,2,3 It inhibits secretion of hepatitis B virus surface antigen (HBsAg) by Hep3B cells expressing hepatitis B virus (HBV) DNA (IC50 = 1.3 μM).1 Destruxin B2 is toxic to Sf9 insect cells in an electric cell-substrate impedance sensing (ECIS) test with a 50% inhibitory concentration (ECIS50) value of 92 μM.4 It is also phytotoxic to B. napus leaves.3 |1. Yeh, S.F., Pan, W., Ong, G.-T., et al. Study of structure-activity correlation in destruxins, a class of cyclodepsipeptides possessing suppressive effect on the generation of hepatitis B virus surface antigen in human hepatoma cells. Biochem. Biophys. Res. Commun. 229(1), 65-72 (1996).|2. Male, K.B., Tzeng, Y.-M., Montes, J., et al. Probing inhibitory effects of destruxins from Metarhizium anisopliae using insect cell based impedance spectroscopy: Inhibition vs chemical structure. Analyst 134(7), 1447-1452 (2009).|3. Buchwaldt, L., and Green, H. Phytotoxicity of destruxin B and its possible role in the pathogenesis of Alternaria brassicae. Plant Pathol. 41(1), 55-63 (1992).
  • Inquiry Price
Size
QTY
ML-345
T358021632125-79-1
Insulin-degrading enzyme (IDE) is a thiol-sensitive zinc-metallopeptidase that acts as the major insulin-degrading protease in vivo, mediating the termination of insulin signaling. [1] In addition to regulating insulin action in diabetes pathogenesis, IDE plays a role in Varicella-Zoster virus infection and degradation of amyloid-β, a peptide implicated in Alzheimer's disease. ML-345 is a small molecule inhibitor that selectively targets cysteine819 in IDE with an EC50 value of 188 nM. [2] It demonstrates 10-fold selectivity for IDE over a panel of enzymes with reactive cysteine residues.[2] Reference:[1]. Maianti, J.P., McFedries, A., Foda, Z.H., et al. Anti-diabetic activity of insulin-degrading enzyme inhibitors mediated by multiple hormones. Nature 511(7507), 94-98 (2014).[2]. Bannister, T.D., Wang, H., Abdul-Hay, S.O., et al. ML345, a small-molecule inhibitor of the insulin-degrading enzyme (IDE). 1 R03 DA024888-01 (MLSCN cycle 6), 1-41 (2014).
  • Inquiry Price
7-10 days
Size
QTY
TNF-α-IN-2
T360972074702-04-6
TNF-α-IN-2 is a highly potent and orally bioavailable inhibitor of tumor necrosis factor alpha (TNFα), exhibiting an IC50 of 25 nM in the HTRF assay. It induces conformational changes in the TNFα trimer upon binding, disrupting signaling when the trimer interacts with TNFR1. TNF-α-IN-2 holds promise as a valuable tool for investigating the pathogenesis of rheumatoid arthritis [1].
  • Inquiry Price
10-14 weeks
Size
QTY
[Des-His1,Glu9]-Glucagon amide TFA
[Des-His1,Glu9]-Glucagon amide TFA
T36638
[Des-His1,Glu9]-Glucagon amide TFA is a potent peptide antagonist of the glucagon receptor with a pA2 value of 7.2, demonstrating potential utility in diabetes pathogenesis research[1].
  • Inquiry Price
Size
QTY
Ganglioside GM1 Mixture (ovine) (ammonium salt)
T375821007119-81-4
Ganglioside GM1is a monosialylated ganglioside and the prototypic ganglioside for those containing one sialic acid residue.1,2It is found in a large variety of cells, including immune cells and neurons, and is enriched in lipid rafts in the cell membrane.3It associates with growth factor receptors, including TrkA, TrkB, and the GDNF receptor complex containing Ret and GFRα, and is required for TrkA expression on the cell surface. Ganglioside GM1interacts with other proteins to increase calcium influx, affecting various calcium-dependent processes, including inducing neuronal outgrowth during differentiation. Ganglioside GM1acts as a receptor for cholera toxin, which binds to its oligosaccharide group, facilitating toxin cell entry into epithelial cells of the jejunum.4,5Similarly, it is bound by the heat-labile enterotoxin fromE. coliin the pathogenesis of traveler's diarrhea.6Ganglioside GM1gangliosidosis, characterized by a deficiency in GM1-β-galactosidase, the enzyme that degrades ganglioside GM1, leads to accumulation of the gangliosides GM1and GA1in neurons and can be fatal in infants.1Levels of ganglioside GM1are decreased in the substantia nigra pars compacta in postmortem brain from patients with Parkinson's disease.3Ganglioside GM1mixture contains a mixture of ovine ganglioside GM1molecular species with primarily C18:0 fatty acyl chain lengths, among various others. [Matreya, LLC. Catalog No. 1544] 1.Kolter, T.Ganglioside biochemistryISRN Biochem.506160(2012) 2.Mocchetti, I.Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophinsCell Mol. Life Sci.62(19-20)2283-2294(2005) 3.Ledeen, R.W., and Wu, G.The multi-tasked life of GM1 ganglioside, a true factotum of natureTrends Biochem. Sci.40(7)407-418(2015) 4.Turnbull, W.B., Precious, B.L., and Homans, S.W.Dissecting the cholera toxin-ganglioside GM1 interaction by isothermal titration calorimetryJ. Am. Chem. Soc.126(4)1047-1054(2004) 5.Blank, N., Schiller, M., Krienke, S., et al.Cholera toxin binds to lipid rafts but has a limited specificity for ganglioside GM1Immunol. Cell Biol.85(5)378-382(2007) 6.Minke, W.E., Roach, C., Hol, W.G., et al.Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonistsBiochemistry38(18)5684-5692(1999)
  • Inquiry Price
Size
QTY
Leukotriene C4 methyl ester
T3762073958-10-8
Leukotriene C4 (LTC4) is the parent cysteinyl-leukotriene produced by the LTC4 synthase-catalyzed conjugation of glutathione to LTA4. LTC4 is produced by neutrophils, macrophages, and mast cells, and by transcellular metabolism in platelets. It is one of the constituents of slow-reacting substance of anaphylaxis (SRS-A) and exhibits potent smooth muscle contracting activity. LTC4-induced bronchoconstriction and enhanced vascular permeability contribute to the pathogenesis of asthma and acute allergic hypersensitivity. The concentration of LTC4 required to produce marked contractions of lung parenchymal strips and isolated tracheal rings is about 1 nM. LTC4 methyl ester is a more lipid soluble form of LTC4. The biological activity of LTC4 methyl ester has not been reported.
  • Inquiry Price
Size
QTY
N-cis-hexadec-9Z-enoyl-L-Homoserine lactone
N-(2-oxotetrahydrofuran-3S-yl) Palmitoleyl Amide,N-cis-hexadec-9Z-enoyl-L-Homoserine lactone
T37736479050-94-7
Quorum sensing is a regulatory process used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group) and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[3] C16:1-Δ9-(L)-HSL is a long-chain AHL that functions as a quorum sensing signaling molecule in strains of S. meliloti.[4],[5],[6],[7] Regulating bacterial quorum sensing signaling can be used to inhibit pathogenesis and thus, represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[8] Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry. J. Bacteriol. 188(2), 773-783 (2006).[3]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580(2), 561-567 (2006).[4]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium. Archives of Microbiology 180, 494-497 (2003).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Marketon, M.M., Glenn, S.A., Eberhard, A., et al. Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. Journal of Bacteriology 185(1), 325-331 (2003).[7]. Marketon, M., Gronquist, M.R., Eberhard, A., et al. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-Acyl homoserine lactones. Journal of Bacteriology 184(20), 5686-5695 (2002).[8]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol. 6(1), 17-27 (2008).
  • Inquiry Price
Size
QTY
N-cis-octadec-9Z-enoyl-L-Homoserine lactone
T377371400974-23-3
Quorum sensing is a regulatory process used by bacteria for controlling gene expression in response to increasing cell density. This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production. Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group) and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family. C18:1-δ9 cis-(L)-HSL is a long-chain AHL that may have antimicrobial activity and thus, might be used to inhibit pathogenesis by regulating bacerial quorum sensing signaling.
  • Inquiry Price
Size
QTY
N-cis-tetradec-9Z-enoyl-L-Homoserine lactone
T377381675245-06-3
Quorum sensing is a regulatory process used by bacteria for controlling gene expression in response to increasing cell density. This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production. Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group) and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family. C14:1-δ9-cis-(L)-HSL is a long-chain AHL that functions as a signaling molecule in the quorum sensing of A. vitis. Regulating bacterial quorum sensing signaling can be used to inhibit pathogenesis and thus, represents a new approach to antimicrobial therpy in the treatment of infectious diseases.
  • Inquiry Price
Size
QTY
N-hexadecanoyl-L-Homoserine lactone
N-palmitoyl-L-Homoserine, N-hexadecanoyl-L-Homoserine lactone, C16-HSL
T3774187206-01-7
Quorum sensing is a regulatory system used by bacteria for controlling gene expression in response to increasing cell density.[1] This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production.[2] Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). Regulation of bacterial quorum sensing signaling systems to inhibit pathogenesis represents a new approach to antimicrobial therapy in the treatment of infectious diseases.[3] AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group), and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family.[4] C16-HSL is one of a number of lipophilic, long acyl side-chain bearing AHLs, including its monounsaturated analog C16:1-(L)-HSL, produced by the LuxI AHL synthase homolog SinI involved in quorum-sensing signaling in S. meliloti, a nitrogen-fixing bacterial symbiont of certain legumes.[5],[6] C16-HSL is the most abundant AHL produced by the proteobacterium R. capsulatus and activates genetic exchange between R. capsulatus cells.[7] N-Hexadecanoyl-L-homoserine lactone and other hydrophobic AHLs tend to localize in relatively lipophilic cellular environments of bacteria and cannot diffuse freely through the cell membrane. The long-chain N-acylhomoserine lactones may be exported from cells by efflux pumps or may be transported between communicating cells by way of extracellular outer membrane vesicles.[8],[9]Reference:[1]. González, J.E., and Keshavan, N.D. Messing with bacterial quorum sensing Microbiol. Mol. Biol. Rev. 70(4), 859-875 (2006).[2]. Gould, T.A., Herman, J., Krank, J., et al. Specificity of acyl-homoserine lactone syntheses examined by mass spectrometry Journal of Bacteriology 188(2), 773-783 (2006).[3]. Cegelski, L., Marshall, G.R., Eldridge, G.R., et al. The biology and future prospects of antivirulence therapies Nature Reviews.Microbiology 6(1), 17-27 (2008).[4]. Penalver, C.G.N., Morin, D., Cantet, F., et al. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions FEBS Letters 580, 561-567 (2006).[5]. Gao, M., Chen, H., Eberhard, A., et al. sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti Journal of Bacteriology 187(23), 7931-7944 (2005).[6]. Teplitski, M., Eberhard, A., Gronquist, M.R., et al. Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium Archives of Microbiology 180, 494-497 (2003).[7]. Schaefer, A.L., Taylor, T.A., Beatty, J.T., et al. Long-chain acyl-homoserine lactone quorum-sensing regulation of Rhodobacter capsulatus gene transfer agent production Journal of Bacteriology 184(23), 6515-6521 (2002).[8]. Pearson, J.P., Van Delden, C., and Iglewski, B.H. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals Journal of Bacteriology 181(4), 1203-1210 (1999).[9]. Mashburn-Warren, L., and Whiteley, M. Special delivery: Vesicle trafficking in prokaryotes Molecular Microbiology 61(4), 839-846 (2006).
  • Inquiry Price
Size
QTY
N-octadecanoyl-L-Homoserine lactone
T37743479050-96-9
C18-HSL is one of four lipophilic, long acyl side-chain-bearing N-acylated homoserine lactones (AHLs) produced by the LuxI AHL synthase homolog SinI, involved in quorum sensing signaling in S. meliloti, a nitrogen-fixing bacterial symbiont of the legume [M. sativa]. C18-HSL and other hydrophobic AHLs tend to localize in relatively lipophilic cellular environments and cannot diffuse freely through the cell membrane. These long-chain N-acylhomoserine lactones may be exported from cells by efflux pumps or transported between communicating cells via extracellular outer membrane vesicles. Quorum sensing, a regulatory system used by bacteria to control gene expression in response to cell density, manifests in phenotypes such as biofilm formation and virulence factor production. Coordinated gene expression is achieved through the production, release, and detection of small diffusible signal molecules called autoinducers, including AHLs, which vary in acyl group length (C4-C18), C3 substitution (hydrogen, hydroxyl, or oxo group), and the presence or absence of carbon-carbon double bonds, conferring signal specificity through LuxR family transcriptional regulators. Regulation of bacterial quorum sensing signaling to inhibit pathogenesis represents a novel approach to antimicrobial therapy in treating infectious diseases.
  • Inquiry Price
Size
QTY
N-pentadecanoyl-L-Homoserine lactone
T37745182359-66-6
Quorum sensing is a regulatory system used by bacteria for controlling gene expression in response to increasing cell density. This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production. Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). Regulation of bacterial quorum sensing signaling systems to inhibit pathogenesis represents a new approach to antimicrobial therapy in the treatment of infectious diseases. AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group), and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family. C15-HSL is a product of Y. pseudituberculosis.
  • Inquiry Price
Size
QTY
N-tridecanoyl-L-Homoserine lactone
T37878878627-21-5
Quorum sensing is a regulatory system used by bacteria for controlling gene expression in response to increasing cell density. This regulatory process manifests itself with a variety of phenotypes including biofilm formation and virulence factor production. Coordinated gene expression is achieved by the production, release, and detection of small diffusible signal molecules called autoinducers. The N-acylated homoserine lactones (AHLs) comprise one such class of autoinducers, each of which generally consists of a fatty acid coupled with homoserine lactone (HSL). Regulation of bacterial quorum sensing signaling systems to inhibit pathogenesis represents a new approach to antimicrobial therapy in the treatment of infectious diseases. AHLs vary in acyl group length (C4-C18), in the substitution of C3 (hydrogen, hydroxyl, or oxo group), and in the presence or absence of one or more carbon-carbon double bonds in the fatty acid chain. These differences confer signal specificity through the affinity of transcriptional regulators of the LuxR family. N-tridecanoyl-L-Homoserine lactone (C13-HSL) possesses a rare odd-numbered acyl carbon chain and is produced by wild-type and mutant strains of Y. pseudotuberculosis in trace amounts.
  • Inquiry Price
Size
QTY
N-undecanoyl-L-Homoserine lactone
T37879216596-71-3
N-acylated homoserine lactones (AHLs) are a class of autoinducers used in bacterial quorum sensing to control gene expression in response to cell density. These molecules, comprising a fatty acid coupled with homoserine lactone (HSL), vary in acyl group length (C4-C18), C3 substitution (hydrogen, hydroxyl, or oxo group), and the presence of carbon-carbon double bonds, determining signal specificity through LuxR family transcriptional regulators. C11-HSL, with its rare odd-numbered acyl carbon chain, may act as a minor quorum-sensing signaling molecule in P. aeruginosa strains. Regulating bacterial quorum sensing can inhibit pathogenesis and represents a novel antimicrobial therapy approach for infectious diseases.
  • Inquiry Price
Size
QTY