# Data Sheet (Cat.No.T8488)



### GMB-475

## **Chemical Properties**

CAS No.: 2490599-18-1

Formula: C43H46F3N7O7S

Molecular Weight: 861.93

Appearance: no data available

store at low temperature, keep away from direct

Storage: sunlight

Powder: -20°C for 3 years | In solvent: -80°C for 1 year



# **Biological Description**

| Description   | GMB-475 is a BCR-ABL1 tyrosine kinase degrader based on PROTAC, overcoming BCR-ABL1-dependent drug resistance. GMB-475 targets BCR-ABL1 protein and recruits the E3 ligase Von Hippel Lindau (VHL).resulting in ubiquitination and subsequent degradation of the oncogenic fusion protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Targets(IC50) | Bcr-Abl,PROTACs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| In vitro      | GMB-475 inhibited the proliferation of certain clinically relevant BCR-ABL1 kinase domain point mutants and further sensitized Ba/F3 BCR-ABL1 cells to inhibition by imatinib, while demonstrating no toxicity toward Ba/F3 parental cells.?Reverse phase protein array analysis suggested additional differences in levels of phosphorylated SHP2, GAB2, and SHC associated with BCR-ABL1 degradation.?Importantly, GMB-475 reduced viability and increased apoptosis in primary CML CD34+ cells, with no effect on healthy CD34+ cells at identical concentrations.?GMB-475 degraded BCR-ABL1 and reduced cell viability in primary CML stem cells.?Together, these findings suggest that combined BCR-ABL1 kinase inhibition and protein degradation may represent a strategy to address BCR-ABL1-dependent drug resistance, and warrant further investigation into the eradication of persistent leukemic stem cells, which rely on neither the presence nor the activity of the BCR-ABL1 protein for survival. |

## **Solubility Information**

| Solubility | DMSO: 95 mg/mL (110.22 mM),Sonication is recommended.           |  |
|------------|-----------------------------------------------------------------|--|
|            | (< 1 mg/ml refers to the product slightly soluble or insoluble) |  |

Page 1 of 2 www.targetmol.com

## **Preparing Stock Solutions**

|       | 1mg       | 5mg       | 10mg       |
|-------|-----------|-----------|------------|
| 1 mM  | 1.1602 mL | 5.8009 mL | 11.6019 mL |
| 5 mM  | 0.232 mL  | 1.1602 mL | 2.3204 mL  |
| 10 mM | 0.116 mL  | 0.5801 mL | 1.1602 mL  |
| 50 mM | 0.0232 mL | 0.116 mL  | 0.232 mL   |

Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents. Please use it as soon as possible.

### Reference

Burslem GM, et al. Targeting BCR-ABL1 in Chronic Myeloid Leukemia by PROTAC-mediated Targeted Protein Degradation. Cancer Res. 2019 Jul 16. pii: canres.1236.2019.

Inhibitor · Natural Compounds · Compound Libraries · Recombinant Proteins

This product is for Research Use Only · Not for Human or Veterinary or Therapeutic Use

Tel:781-999-4286 E\_mail:info@targetmol.com Address:36 Washington Street,Wellesley Hills,MA 02481

Page 2 of 2 www.targetmol.com