Home Tools
Log in
Cart

Tiplaxtinin

Catalog No. T2030   CAS 393105-53-8
Synonyms: PAI-039, Tiplasinin

Tiplaxtinin (Tiplasinin)(PAI-039) is a selective and orally efficacious inhibitor of plasminogen activator inhibitor-1 (PAI-1) with IC50 of 2.7 uM.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Tiplaxtinin Chemical Structure
Tiplaxtinin, CAS 393105-53-8
Pack Size Availability Price/USD Quantity
2 mg In stock $ 37.00
5 mg In stock $ 59.00
10 mg In stock $ 87.00
25 mg In stock $ 156.00
50 mg In stock $ 273.00
100 mg In stock $ 538.00
500 mg In stock $ 1,150.00
1 mL * 10 mM (in DMSO) In stock $ 66.00
Bulk Inquiry
Get quote
Select Batch  
Purity: 99.49%
Purity: 99.26%
Purity: 99.16%
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description Tiplaxtinin (Tiplasinin)(PAI-039) is a selective and orally efficacious inhibitor of plasminogen activator inhibitor-1 (PAI-1) with IC50 of 2.7 uM.
Targets&IC50 PAI1:2.7 μM
In vitro In a panel of human bladder cell lines, PAI-1 results in the reduction of cellular proliferation, cell adhesion, and colony formation, and the induction of apoptosis and anoikis. [4]
In vivo In a rat carotid thrombosis model, Tiplaxtinin (1 mg/kg, p.o.) increases time to occlusion and prevents the carotid blood flow reduction. [1] In C57BL/6J mice, (1 mg/g chow) attenuates Ang II-induced aortic remodeling. [2] In untreated type 1 diabetic mice, Tiplaxtinin (p.o.) restores skeletal muscle regeneration. [3] In athymic mice bearing human cancer cell line T24 and HeLa xenografts, Tiplaxtinin (1 mg/kg, p.o.) reduces tumor xenograft growth, associated with a reduction in tumor angiogenesis, a reduction in cellular proliferation, and an increase in apoptosis. [4]
Kinase Assay Direct PAI-I in vitro activity assays : The chromogenic assay is initiated by the addition of tiplaxtinin (10 – 100 μM final concentration, maximum DMSO concentration of 0.2%) to recombinant human PAI-1 (140 nM in pH 6.6 buffer). After a 15 minute incubation at 25°C, 70 nM of recombinant human t-PA is added, and the combination of tiplaxtinin, PAI-1 and tPA are incubated for an additional 30 minutes. After the second incubation, Spectrozyme tPA, is added and absorbance read at 405 nm at 0 and 60 minutes. Relative PAI-1 inhibitory activity is equal to the residual tPA activity in the tiplaxtinin / PAI-1 treatment. Control treatments include the complete inhibition of tPA by PAI-1 at the molar ratio employed (2:1), and the absence of any effect of the tiplaxtinin on t-PA alone. The immunofunctional assay is based upon the non-SDS dissociable interaction between tPA and active PAI-1. Assay plates are coated with 100 μl of a solution of t-PA (10 μg/ml in TBS), and kept at 4 °C overnight. Tiplaxtinin is dissolved in DMSO and diluted to a final concentration of 1-100 μM as described above. Tiplaxtinin is then incubated with human PAI-1 (50 ng/ml) for 15 minutes, and an aliquot of this solution added to the t-PA-coated plate for 1 h. The solution is aspirated from the plate, which is then washed with a buffer consisting of 0.05% Tween 20 and 0.1% BSA in TBS. This assay detects only active inhibitory PAI-1 (not latent or substrate) bound to the plate, and is quantitated using a monoclonal antibody against human PAI-1 (MA33B8). A 1000X dilution of MA33B8 is added to the plate and incubated at for one hour, aspirated and washed. A secondary antibody consisting of goat anti-mouse IgG (H+L)-AP alkaline phosphatase conjugate is added, incubated for one hour, aspirated and washed. A 100 μl aliquot of alkaline phosphatase solution is added, followed by determination of absorbance at 405 nm 60 minutes later.The quantitation of residual active PAI-1 bound to t-PA at varying concentrations of tiplaxtinin is used to determine the IC50 by fitting the results to a logistic dose-response program, with the IC50 defined as the concentration of compound required to achieve 50% inhibition of PAI-1 activity. The assay sensitivity is 5 ng/ml of human PAI-1 as determined from a standard curve ranging from 0-100 ng/ml of human PAI-1.
Cell Research Briefly, cell lines, T24, UM-UC-14, UROtsa, and HeLa cells are plated in 96-well dishes in triplicate at 1×103 cells per well and allowed to adhere for 24 hours. Subsequently, tiplaxtinin is added to the wells and allowed to incubate at the indicated concentrations. Cellular proliferation is determined by CellTiter-Glo Luminescent Cell Viability Assay according to manufacturer's instructions at 24 hours, and IC50 of tiplaxtinin is determined in Graphpad Prism. Luminescence was measured using a FLUOstar OPTIMA Reader.(Only for Reference)
Synonyms PAI-039, Tiplasinin
Molecular Weight 439.38
Formula C24H16F3NO4
CAS No. 393105-53-8

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

H2O: < 1 mg/mL (insoluble or slightly soluble)

Ethanol: 15 mg/mL (34.1 mM)

DMSO: 67 mg/mL (152.5 mM)

TargetMolReferences and Literature

1. Elokdah H, et al. J Med Chem. 2004, 47(14), 3491-3494. 2. Weisberg AD, et al. Arterioscler Thromb Vasc Biol. 2005, 25(2), 365-371. 3. Krause MP, et al. Diabetes. 2011, 60(7), 1964-1972. 4. Gomes-Giacoia E, et al. Mol Cancer Ther. 2013, 12(12), 2697-2708.

TargetMolCitations

1. Zhang W, Yang S, Chen D, et al. SOX2-OT induced by PAI-1 promotes triple-negative breast cancer cells metastasis by sponging miR-942-5p and activating PI3K/Akt signaling. Cellular and Molecular Life Sciences. 2022, 79(1): 1-16. 2. Chen X, Wang H, Wu C, et al.Endothelial H2S-AMPK dysfunction upregulates the angiocrine factor PAI-1 and contributes to lung fibrosis.Redox Biology.2024: 103038.

Related compound libraries

This product is contained In the following compound libraries:
Inhibitor Library Drug Repurposing Compound Library Apoptosis Compound Library NO PAINS Compound Library ReFRAME Related Library Autophagy Compound Library Clinical Compound Library Anti-Metabolism Disease Compound Library Metabolism Compound Library Target-Focused Phenotypic Screening Library

Related Products

Related compounds with same targets
GW-6604 TM5275 sodium Loureirin B Upamostat TM5007 UK-371804 TM5441 Angstrom6

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Tiplaxtinin 393105-53-8 Apoptosis Metabolism PAI-1 Inhibitor PAI 039 Plasminogen activator inhibitor-1 PAI-039 inhibit PAI039 Tiplasinin inhibitor

 

TargetMol