Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

Flavopiridol

Flavopiridol
Contact us for more batch information
Select Batch
Purity:99.85%
Resource Download

Flavopiridol

Catalog No. T6837Cas No. 146426-40-6
Flavopiridol (Alvocidib) (Alvocidib) competes with ATP to inhibit CDKs including CDK1, CDK2, CDK4 and CDK6 with IC50 of ~ 40 nM. It is 7.5-fold more selective for CDK1, 2, 4, 6 versus CDK7. Flavopiridol is initially found to inhibit EGFR and PKA. Phase 1/2.
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.
Pack SizePriceAvailabilityQuantity
5 mg$78In Stock
10 mg$104In Stock
25 mg$248In Stock
50 mg$398In Stock
1 mL x 10 mM (in DMSO)$94In Stock
Bulk & Custom
Add to Cart

Related Compound Libraries of "Flavopiridol"

Product Introduction

Bioactivity
Description
Flavopiridol (Alvocidib) (Alvocidib) competes with ATP to inhibit CDKs including CDK1, CDK2, CDK4 and CDK6 with IC50 of ~ 40 nM. It is 7.5-fold more selective for CDK1, 2, 4, 6 versus CDK7. Flavopiridol is initially found to inhibit EGFR and PKA. Phase 1/2.
In vitro
Flavopiridol displays less activity against unrelated kinases such as MAP, PAK, PKC, and EGFR with IC50 of >14 μM. Flavopiridol significantly inhibits the colony growth of HCT116, A2780, PC3, and Mia PaCa-2 cells with IC50 of 13 nM, 15 nM, 10 nM and 36 nM, respecitively. [1] Flavopiridol also potently inhibits the activity of Glycogen synthase kinase-3 (GSK-3) with an IC50 of 280 nm. [2] Compared with other CDKs, Flavopiridol inhibits the activity of CDK7 less potently with IC50 of 875 nM. Flavopiridol (0.5 μM) inhibits both pSer807/811 Rb and pThr199 NPM, whereas mild changes are observed at pThr821 Rb. Flavopiridol also decreases the overall RNA polymerase II level, as well as the phosphorylation of RNA polymerase II on the CTD repeats at Ser2 Ser5. [3] As a broad spectrum CDK inhibitor, Flavopiridol can inhibit cell cycle progression in either G1 or G2. Flavopiridol (0.3 μM) induces G1 arrest in either MCF-7 or MDA-MB-468 cells by inhibition of the CDK4 or CDK2 kinase activity. [4] Flavopiridol exhibits potent cytotoxicity against a wide variety of tumor cell lines with IC50 values ranging form 16 nM for LNCAP to 130 nM for K562. [5]
In vivo
Administration of Flavopiridol at 7.5 mg/kg for 7 days displays slight antitumor activity against P388 murine leukemia, resulting in %T/C value of 110, and active against the human A2780 ovarian carcinoma implanted sc in nude mice, producing 1.5 log cell kill (LCK). [5] Flavopiridol treatment at 1-2.5 mg/kg for 10 days significantly suppresses collagen-induced arthritis in mice in a dose-dependent manner, by inhibiting synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII are maintained. [6] In the p21-intact Hct116 xenografts in nude mice, administration of CPT-11 (100 mg/kg) followed by Flavopiridol (3 mg/kg) 7 and 16 hours later significantly inhibits tumor regression by 86% and 82%, respectively, displaying >2 fold inhibition compared with CPT-11 alone by 40 %. The combination produces ~30% complete response rate (CR) in contrast to CPT-11 alone where no CR is found. [7]
Kinase Assay
CDK kinase assay: For CDK1/cyclin B1 kinase assay, kinase reactions consist of 100 ng of baculovirus expressed GST-CDK1/cyclin B1 (human) complex, 1 μg histone HI, 0.2 μCi [γ-33P]ATP, 25 μM ATP in 50 μL kinase buffer (50 mM Tris, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 0.5 mM DTT). For CDK2/cyclin E kinase assay, kinase reactions consist of 5 ng of baculovirus expressed GST-CDK2/cyclin E (human) complex, 0.5 μg GST-RB fusion protein (amino acids 776-928 of retinoblastoma protein), 0.2 μCi [γ-33P]ATP, 25 μM ATP in 50 μL kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 2 mM DTT). For CDK4/cyclin D1 kinase assay, kinase reactions consist of 150 ng of baculovirus expressed GST-CDK4/cyclin D1 (human), 280 ng of Stag-cyclin D1, 0.5 μg GST-RB fusion protein (amino acids 776-928 of retinoblastoma protein), 0.2 μCi [γ-33P]ATP, 25 μM ATP in 50 μL kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 2 mM DTT). Reactions are incubated for 45 minutes for CDK1 and CDK2, or 1 hour for CDK4 at 30 °C and stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration 15%. TCA precipitates are collected onto GF/C unifilter plates using a Filtermate universal harvester and the filters are quantitated using a TopCount 96-well liquid scintillation counter. Flavopiridol is dissolved at 10 mM in dimethylformamide (DMF) and evaluated at six concentrations, each in triplicate. The final concentration of DMF in the assay = 2%. IC50 values are derived by nonlinear regression analysis and have a coefficient of variance = 16%. To assay Flavopiridol activity on CDK6, a filter-binding assay is established. The following are combined in the reaction mixture: 2 μL of CDK6 (0.7 mg/μL), 5 μL of histone H1 (6 mg/mL), 14 μL of kinase buffer (60 mM β-glycerophosphate, 30 mM p-nitrophenyl phosphate, 25 mM MOPS (pH 7.0), 5 mM EGTA, 15 mM MgCl2, 1 mM DTT, 0.1 mM Na-vanadate), 3 μL of increasing concentrations of Flavopiridol diluted in 50% DMSO, and 6 μL of 33P-ATP (1 mCi/mL) in nonradioactive ATP at 90 μM concentration (final concentration: 15 μM). The assay is initiated by the addition of 33P-ATP. The reaction is incubated for 20 minutes at 30°C. A 25 μL aliquot of the supernatant is then spotted onto Whatman P81 phosphocellulose paper. Filters are washed 5 times with 1% phosphoric acid solution. Wet filters are counted in the presence of 1 mL of scintillation fluid. Cdk9 activity is measured using 50 nM of recombinant Cdk9/cyclin T in 50 mM HEPES pH 7.5, 10 mM MgCl2, 1 mM DTT, 3 μM Na3VO4, 150 μM RNA polymerase CDT peptide and 80 μM ATP. Cdk7 assay is performed in the same buffer using 37 nM of purified kinase in the presence of 200 μM ATP and 10 μM myelin binding protein as a substrate. The potency of Flavopiridol toward CDK9 and CDK7 is determined using either a strong anion exchanger (Dowex 1-X8 resin, formate form)-based assay or a scintillation proximity assay. IC50 values are calculated from the dose-response curves.
Cell Research
Cells are exposed to various concentrations of Flavopiridol for 72 hours at which time the tetrazolium dye, MTS in combination with phenazine methosulfate, is added. After 3 hours, the absorbency is measured at 492 nm, which is proportional to the number of viable cells. The results are expressed as IC50 values. For cell Cycle analysis, cells are fixed in paraformaldehyde and ethanol, washed, resuspended in staining solution of TdT enzyme and FITC-dUTP, washed, stained with PI following RNase treatment, and then analyzed by flow cytometry. (Only for Reference)
AliasL868275, Alvocidib, NSC 649890 HCl, HMR-1275
Chemical Properties
Molecular Weight401.84
FormulaC21H20ClNO5
Cas No.146426-40-6
Storage & Solubility Information
Storage Powder: -20°C for 3 years | In solvent: -80°C for 1 year
Solubility Information
DMSO: 12 mg/mL (29.9 mM)
Ethanol: 8 mg/mL (19.9 mM)
H2O: < 1 mg/mL (insoluble or slightly soluble)
Solution Preparation Table
DMSO/Ethanol
1mg5mg10mg50mg
1 mM2.4886 mL12.4428 mL24.8855 mL124.4276 mL
5 mM0.4977 mL2.4886 mL4.9771 mL24.8855 mL
10 mM0.2489 mL1.2443 mL2.4886 mL12.4428 mL
DMSO
1mg5mg10mg50mg
20 mM0.1244 mL0.6221 mL1.2443 mL6.2214 mL
50 mM0.0498 mL0.2489 mL0.4977 mL2.4886 mL
100 mM0.0249 mL0.1244 mL0.2489 mL1.2443 mL

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
For example, your dosage is 10 mg/kg,each TargetMol | Animal experiments animal weighs 20 g, and the dosage volume is 100 μL. A total of TargetMol | Animal experiments 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL.
Mother liquor preparation method: 2 mg of drug dissolved in 50 μLDMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μLDMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μLTween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords