Home Tools
Log in
Cart

Flavopiridol

Catalog No. T6837   CAS 146426-40-6
Synonyms: L868275, Alvocidib, NSC 649890 HCl, HMR-1275

Flavopiridol (Alvocidib) (Alvocidib) competes with ATP to inhibit CDKs including CDK1, CDK2, CDK4 and CDK6 with IC50 of ~ 40 nM. It is 7.5-fold more selective for CDK1, 2, 4, 6 versus CDK7. Flavopiridol is initially found to inhibit EGFR and PKA. Phase 1/2.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Flavopiridol Chemical Structure
Flavopiridol, CAS 146426-40-6
Pack Size Availability Price/USD Quantity
5 mg In stock $ 678.00
10 mg In stock $ 1,018.00
25 mg In stock Inquiry
50 mg In stock Inquiry
1 mL * 10 mM (in DMSO) In stock $ 809.00
Bulk Inquiry
Get quote
Select Batch  
Purity: 99.85%
Purity: 97.74%
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description Flavopiridol (Alvocidib) (Alvocidib) competes with ATP to inhibit CDKs including CDK1, CDK2, CDK4 and CDK6 with IC50 of ~ 40 nM. It is 7.5-fold more selective for CDK1, 2, 4, 6 versus CDK7. Flavopiridol is initially found to inhibit EGFR and PKA. Phase 1/2.
Targets&IC50 CDK1:40 nM, CDK4:40 nM, CDK2:40 nM, CDK6:40 nM
In vitro Flavopiridol displays less activity against unrelated kinases such as MAP, PAK, PKC, and EGFR with IC50 of >14 μM. Flavopiridol significantly inhibits the colony growth of HCT116, A2780, PC3, and Mia PaCa-2 cells with IC50 of 13 nM, 15 nM, 10 nM and 36 nM, respecitively. [1] Flavopiridol also potently inhibits the activity of Glycogen synthase kinase-3 (GSK-3) with an IC50 of 280 nm. [2] Compared with other CDKs, Flavopiridol inhibits the activity of CDK7 less potently with IC50 of 875 nM. Flavopiridol (0.5 μM) inhibits both pSer807/811 Rb and pThr199 NPM, whereas mild changes are observed at pThr821 Rb. Flavopiridol also decreases the overall RNA polymerase II level, as well as the phosphorylation of RNA polymerase II on the CTD repeats at Ser2 Ser5. [3] As a broad spectrum CDK inhibitor, Flavopiridol can inhibit cell cycle progression in either G1 or G2. Flavopiridol (0.3 μM) induces G1 arrest in either MCF-7 or MDA-MB-468 cells by inhibition of the CDK4 or CDK2 kinase activity. [4] Flavopiridol exhibits potent cytotoxicity against a wide variety of tumor cell lines with IC50 values ranging form 16 nM for LNCAP to 130 nM for K562. [5]
In vivo Administration of Flavopiridol at 7.5 mg/kg for 7 days displays slight antitumor activity against P388 murine leukemia, resulting in %T/C value of 110, and active against the human A2780 ovarian carcinoma implanted sc in nude mice, producing 1.5 log cell kill (LCK). [5] Flavopiridol treatment at 1-2.5 mg/kg for 10 days significantly suppresses collagen-induced arthritis in mice in a dose-dependent manner, by inhibiting synovial hyperplasia and joint destruction, whereas serum concentrations of anti-collagen type II (CII) Abs and proliferative responses to CII are maintained. [6] In the p21-intact Hct116 xenografts in nude mice, administration of CPT-11 (100 mg/kg) followed by Flavopiridol (3 mg/kg) 7 and 16 hours later significantly inhibits tumor regression by 86% and 82%, respectively, displaying >2 fold inhibition compared with CPT-11 alone by 40 %. The combination produces ~30% complete response rate (CR) in contrast to CPT-11 alone where no CR is found. [7]
Kinase Assay CDK kinase assay: For CDK1/cyclin B1 kinase assay, kinase reactions consist of 100 ng of baculovirus expressed GST-CDK1/cyclin B1 (human) complex, 1 μg histone HI, 0.2 μCi [γ-33P]ATP, 25 μM ATP in 50 μL kinase buffer (50 mM Tris, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 0.5 mM DTT). For CDK2/cyclin E kinase assay, kinase reactions consist of 5 ng of baculovirus expressed GST-CDK2/cyclin E (human) complex, 0.5 μg GST-RB fusion protein (amino acids 776-928 of retinoblastoma protein), 0.2 μCi [γ-33P]ATP, 25 μM ATP in 50 μL kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 2 mM DTT). For CDK4/cyclin D1 kinase assay, kinase reactions consist of 150 ng of baculovirus expressed GST-CDK4/cyclin D1 (human), 280 ng of Stag-cyclin D1, 0.5 μg GST-RB fusion protein (amino acids 776-928 of retinoblastoma protein), 0.2 μCi [γ-33P]ATP, 25 μM ATP in 50 μL kinase buffer (50 mM Hepes, pH 8.0, 10 mM MgCl2, 1 mM EGTA, 2 mM DTT). Reactions are incubated for 45 minutes for CDK1 and CDK2, or 1 hour for CDK4 at 30 °C and stopped by the addition of cold trichloroacetic acid (TCA) to a final concentration 15%. TCA precipitates are collected onto GF/C unifilter plates using a Filtermate universal harvester and the filters are quantitated using a TopCount 96-well liquid scintillation counter. Flavopiridol is dissolved at 10 mM in dimethylformamide (DMF) and evaluated at six concentrations, each in triplicate. The final concentration of DMF in the assay = 2%. IC50 values are derived by nonlinear regression analysis and have a coefficient of variance = 16%. To assay Flavopiridol activity on CDK6, a filter-binding assay is established. The following are combined in the reaction mixture: 2 μL of CDK6 (0.7 mg/μL), 5 μL of histone H1 (6 mg/mL), 14 μL of kinase buffer (60 mM β-glycerophosphate, 30 mM p-nitrophenyl phosphate, 25 mM MOPS (pH 7.0), 5 mM EGTA, 15 mM MgCl2, 1 mM DTT, 0.1 mM Na-vanadate), 3 μL of increasing concentrations of Flavopiridol diluted in 50% DMSO, and 6 μL of 33P-ATP (1 mCi/mL) in nonradioactive ATP at 90 μM concentration (final concentration: 15 μM). The assay is initiated by the addition of 33P-ATP. The reaction is incubated for 20 minutes at 30°C. A 25 μL aliquot of the supernatant is then spotted onto Whatman P81 phosphocellulose paper. Filters are washed 5 times with 1% phosphoric acid solution. Wet filters are counted in the presence of 1 mL of scintillation fluid. Cdk9 activity is measured using 50 nM of recombinant Cdk9/cyclin T in 50 mM HEPES pH 7.5, 10 mM MgCl2, 1 mM DTT, 3 μM Na3VO4, 150 μM RNA polymerase CDT peptide and 80 μM ATP. Cdk7 assay is performed in the same buffer using 37 nM of purified kinase in the presence of 200 μM ATP and 10 μM myelin binding protein as a substrate. The potency of Flavopiridol toward CDK9 and CDK7 is determined using either a strong anion exchanger (Dowex 1-X8 resin, formate form)-based assay or a scintillation proximity assay. IC50 values are calculated from the dose-response curves.
Cell Research Cells are exposed to various concentrations of Flavopiridol for 72 hours at which time the tetrazolium dye, MTS in combination with phenazine methosulfate, is added. After 3 hours, the absorbency is measured at 492 nm, which is proportional to the number of viable cells. The results are expressed as IC50 values. For cell Cycle analysis, cells are fixed in paraformaldehyde and ethanol, washed, resuspended in staining solution of TdT enzyme and FITC-dUTP, washed, stained with PI following RNase treatment, and then analyzed by flow cytometry. (Only for Reference)
Synonyms L868275, Alvocidib, NSC 649890 HCl, HMR-1275
Molecular Weight 401.84
Formula C21H20ClNO5
CAS No. 146426-40-6

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

DMSO: 12 mg/mL (29.9 mM)

Ethanol: 8 mg/mL (19.9 mM)

H2O: < 1 mg/mL (insoluble or slightly soluble)

TargetMolReferences and Literature

1. Kim KS, et al. J Med Chem, 2000, 43(22), 4126-4134. 2. Lu H, et al. J Med Chem, 2005, 48(3), 737-743. 3. Montagnoli A, et al. Nat Chem Biol, 2008, 4(6), 357-365. 4. Carlson BA, et al. Cancer Res, 1996, 56(13), 2973-2978. 5. Kim KS, et al. J Med Chem, 2002, 45(18), 3905-3927.

TargetMolCitations

1. Zhang G M, Huang S S, Ye L X, et al. Reciprocal positive regulation between BRD4 and YAP in GNAQ-mutant uveal melanoma cells confers sensitivity to BET inhibitors. Pharmacological Research. 2022: 106464. 2. Wang J, Luo L, Ding Q, et al. Development of a Multi-Target Strategy for the Treatment of Vitiligo via Machine Learning and Network Analysis Methods. Frontiers in pharmacology. 2021, 12. 3. Jiang L, Yu Y, Li Z, et al.BMS-265246, a Cyclin-Dependent Kinase Inhibitor, Inhibits the Infection of Herpes Simplex Virus Type 1.Viruses.2023, 15(8): 1642.

Related compound libraries

This product is contained In the following compound libraries:
Anti-Cancer Approved Drug Library Anti-Cancer Clinical Compound Library Anti-Cancer Active Compound Library Anti-Cancer Drug Library Hematonosis Compound Library Bioactive Compound Library Clinical Compound Library Drug Repurposing Compound Library Approved Drug Library Human Metabolite Library

Related Products

Related compounds with same targets
CAN508 A-674563 Olomoucine AG-024322 CC-671 XL413 AZA197 CDK9-IN-11

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Flavopiridol 146426-40-6 Apoptosis Autophagy Cell Cycle/Checkpoint Microbiology/Virology Proteases/Proteasome HIV Protease CDK L868275 HMR 1275 inhibit L86-8275 L-868275 L 868275 Alvocidib Cyclin dependent kinase Inhibitor NSC 649890 HCl Human immunodeficiency virus HIV HMR1275 HMR-1275 inhibitor

 

TargetMol