MAPK Raf AZ304


Catalog No. T5172   CAS 942507-42-8

AZ304 is an ATP-competitive dual BRAF kinase inhibitor, potently inhibits BRAF (WT), BRAF (V600E), and wild type CRAF (IC50s: 79/38/68 nM).

AZ304, CAS 942507-42-8
Pack Size Availability Price/USD Quantity
1 mg In stock 57.00
5 mg In Stock 120.00
10 mg In Stock 193.00
50 mg In Stock 800.00
1 mL * 10 mM (in DMSO) In stock 128.00
Bulk Inquiry
Get quote
Select Batch  
Purity 99.83%
Biological Description
Chemical Properties
Storage & Solubility Information
Description AZ304 is an ATP-competitive dual BRAF kinase inhibitor, potently inhibits BRAF (WT), BRAF (V600E), and wild type CRAF (IC50s: 79/38/68 nM).
Targets&IC50 B-RAF V600E ,   B-RAF ,   C-RAF ,   p38 ,   CSF1R
In vivo Compared with vehicle-treated controls, treatment with AZ304 or Cetuximab alone resulted in reduced tumor growth in both xenograft models. Furthermore, the AZ304 and Cetuximab combination caused dramatic tumour growth inhibition and even shrinking in the Caco-2 xenograft model.
Kinase Assay Briefly, the kinase activity of BRAF WT, BRAF V600E, or CRAF was measured using an AlphaScreen assay monitoring MEK1/2 phosphorylation at Ser217/221. For CDK2 and CDK4 kinases, activity was also measured by AlphaScreen, monitoring phosphorylation of biotin Rb peptide at Ser780. Similarly, MAP3K7, CSF1R, and JAK2 kinase activity were measured by phosphorylation of their biotinylated substrates MKK6 kinase-dead protein at Ser271/Thr275, or tyrosine phosphorylation of pEY or Tyk2 Tyr1054/1055 peptides, respectively. CSK, IGF1R, EGFR, FGFR1 and SRC kinase activity was measured using a sandwich ELISA detecting phosphorylated poly EAY peptide with a HRP conjugated phosphotyrosine antibody and TMB substrate, while p38 kinase activity was measured by monitoring phosphorylation of MBP protein with radiolabeled 33P-ATP in a filter binding format. All assays were screened under respective ATP Km conditions and inhibitor IC50s were derived from either 5 (RAF kinases, CDK2, CDK4, MAP3K7, JAK2), 10 (CSK, IGF1R, EGFR, FGFR1, SRC) or 11 (p38, CSF1R) point compound dose response.
Cell Research
Briefly, the cells were treated with DMSO or multiple concentrations of AZ304 for 3 days. The cell growth was determined using the CellTiter 96 Aqueous One Cell Proliferation Assay. Percentage of net growth at day 3 (100%) relative to day 0 (0%) was calculated and the concentration of compound required to inhibit growth by 50% (GI50) determined. The assays were done in triplicate across different plates. The proliferation assays in selected colorectal cancer cell lines were measured using an MTT assay. First of all, cultured cells were seeded into 96-well plates (2000–5000 cells per well). After incubation for 24 h, the cells were pretreated with DMSO or AZ304 for 1 h. Then the indicated doses of Cetuximab were added. Cells were incubated for a further 48 or 72 h. For EGF stimulating assay, cells were incubated in reduced serum medium overnight and then treated with AZ304 or AZ304 + EGF (20 ng/ml) for 72 h. Twenty microliters of MTT solution (5 mg/ml) was added to each well followed by 4 h incubation at 37 °C. The cell culture medium was removed and the cells were lysed in 200 μl DMSO and the results were measured using a microplate reader.
Animal Research
Female 4–6 weeks old athymic BALB/c nude mice were purchased from Shanghai SLAC Laboratory Animal Centre. RKO/Caco-2 cells (1 × 10^7) in 200 μl PBS were injected subcutaneously into the right scapular region of mice. After the average tumour size reached 150 – 200 mm^3, animals were randomly divided into 4 groups, each containing three mice and were treated with vehicle only (CON) which orally received 0.5% HPMC and injected with 0.9% saline, AZ304 only (AZ304 dissolved in 0.5% HPMC, 10 mg/kg by oral gavage twice daily), Cetuximab only (40 mg/kg by intraperitoneal injection twice per week), or their combination (A+C) for 10 days. Tumors were measured with a caliper every 2 days, so did body weights. Tumor volume was calculated using the formula V = 1/2 (width^2 × length). Mice were terminated by CO2 inhalation when the tumor diameters reached 1.5 cm, according to the protocol filed with the Guidance of Institutional Animal Care and Use Committee of China Medical University.
Molecular Weight 451.52
Formula C27H25N5O2
CAS No. 942507-42-8


0-4℃ for short term (days to weeks), or -20℃ for long term (months).

Solubility Information

DMSO: 85 mg/mL

Ethanol: 4 mg/mL

Water: Insoluble

( < 1 mg/ml refers to the product slightly soluble or insoluble )


References and Literature
1. Ma R, et al. AZ304, a novel dual BRAF inhibitor, exerts anti-tumour effects in colorectal cancer independently of BRAF genetic status. Br J Cancer. 2018 May;118(11):1453-1463.

Related compound libraries

This product is contained In the following compound libraries:
Bioactive Compound Library Inhibitor Library Anti-cancer Compound Library Stem cell Differentiation Compound Library Apoptosis Compound Library Autophagy Compound Library MAPK Inhibitor Library Tyrosine kinase inhibitor library Kinase Inhibitor Library Anti-cancer Metabolism Compound Library Preclinical Compound Library Anti-obesity Compound Library Anti-aging Compound Library Anti-cancer Active Compound library Target-Focused Phenotypic Screening Library HIF-1 Signaling Pathway Compound Library Anti-Pancreatic Cancer Compound Library Cytoskeletal Signaling Pathway Compound Library Glutamine Metabolism Compound Library

Related Products

Related compounds with same targets
I-49 free base I-37 free base( 2359690-13-2(free base)) Rosin Cytochalasin D Sorafenib Sorafenib tosylate (-)-vibo-Quercitol I-37

Dose Conversion

Safe and effective drug dosing is necessary, regardless of its purpose of administration. Learn More

In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Average weight of animals
Dosing volume per animal
Number of animals
Step Two: Enter the in vivo formulation
% Tween 80
% ddH2O
Calculate Reset


Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box


Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box


Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.


Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.


Tech Support

Answers to questions you may have can be found in the Inhibitor Handling Instructions. Topics include how to prepare stock solutions, how to store Products, and issues that need special attention for cell-based assays and animal experiments.