Select your Country or Region

  • TargetMol | Compound LibraryArgentinaArgentina
  • TargetMol | Compound LibraryAustraliaAustralia
  • TargetMol | Compound LibraryAustriaAustria
  • TargetMol | Compound LibraryBelgiumBelgium
  • TargetMol | Compound LibraryBrazilBrazil
  • TargetMol | Compound LibraryBulgariaBulgaria
  • TargetMol | Compound LibraryCroatiaCroatia
  • TargetMol | Compound LibraryCyprusCyprus
  • TargetMol | Compound LibraryCzechCzech
  • TargetMol | Compound LibraryDenmarkDenmark
  • TargetMol | Compound LibraryEgyptEgypt
  • TargetMol | Compound LibraryEstoniaEstonia
  • TargetMol | Compound LibraryFinlandFinland
  • TargetMol | Compound LibraryFranceFrance
  • TargetMol | Compound LibraryGermanyGermany
  • TargetMol | Compound LibraryGreeceGreece
  • TargetMol | Compound LibraryHong KongHong Kong
  • TargetMol | Compound LibraryHungaryHungary
  • TargetMol | Compound LibraryIcelandIceland
  • TargetMol | Compound LibraryIndiaIndia
  • TargetMol | Compound LibraryIrelandIreland
  • TargetMol | Compound LibraryIsraelIsrael
  • TargetMol | Compound LibraryItalyItaly
  • TargetMol | Compound LibraryKoreaKorea
  • TargetMol | Compound LibraryLatviaLatvia
  • TargetMol | Compound LibraryLebanonLebanon
  • TargetMol | Compound LibraryMalaysiaMalaysia
  • TargetMol | Compound LibraryMaltaMalta
  • TargetMol | Compound LibraryMoroccoMorocco
  • TargetMol | Compound LibraryNetherlandsNetherlands
  • TargetMol | Compound LibraryNew ZealandNew Zealand
  • TargetMol | Compound LibraryNorwayNorway
  • TargetMol | Compound LibraryPolandPoland
  • TargetMol | Compound LibraryPortugalPortugal
  • TargetMol | Compound LibraryRomaniaRomania
  • TargetMol | Compound LibrarySingaporeSingapore
  • TargetMol | Compound LibrarySlovakiaSlovakia
  • TargetMol | Compound LibrarySloveniaSlovenia
  • TargetMol | Compound LibrarySpainSpain
  • TargetMol | Compound LibrarySwedenSweden
  • TargetMol | Compound LibrarySwitzerlandSwitzerland
  • TargetMol | Compound LibraryTaiwan,ChinaTaiwan,China
  • TargetMol | Compound LibraryThailandThailand
  • TargetMol | Compound LibraryTurkeyTurkey
  • TargetMol | Compound LibraryUnited KingdomUnited Kingdom
  • TargetMol | Compound LibraryUnited StatesUnited States
  • TargetMol | Compound LibraryOther CountriesOther Countries
Shopping Cart
  • Remove All
  • TargetMol
    Your shopping cart is currently empty

Bitopertin

Bitopertin
Contact us for more batch information
Select Batch
Purity:100%
Resource Download

Bitopertin

Catalog No. T6788Cas No. 845614-11-1
Bitopertin (Paliflutine) (RG1678, RO-4917838) is a potent inhibitor of glycine transporter 1 (GlyT1), with Ki of 8.1 nM for human hGlyT1b and IC50 of 22-25 nM in Chinese hamster ovary cells.
All TargetMol products are for research purposes only and cannot be used for human consumption. We do not provide products or services to individuals. Please comply with the intended use and do not use TargetMol products for any other purpose.
Pack SizePriceAvailabilityQuantity
1 mg$32In Stock
2 mg$45In Stock
5 mg$72In Stock
10 mg$98In Stock
25 mg$225In Stock
50 mg$413In Stock
100 mg$615In Stock
1 mL x 10 mM (in DMSO)$89In Stock
Bulk & Custom
Add to Cart

Related Compound Libraries of "Bitopertin"

Product Introduction

Bioactivity
Description
Bitopertin (Paliflutine) (RG1678, RO-4917838) is a potent inhibitor of glycine transporter 1 (GlyT1), with Ki of 8.1 nM for human hGlyT1b and IC50 of 22-25 nM in Chinese hamster ovary cells.
In vitro
RG1678 noncompetitively inhibits [3H]glycine uptake in cells stably expressing hGlyT1b and mGlyT1b, with IC50 values of 25 ± 2 nM and 22 ± 5 nM, respectively (n = 6) and competitively displaces [3H]ORG24598 binding with a Ki of 8.1 nM at human hGlyT1b in membranes from Chinese hamster ovary cells. RG1678 has no effect on hGlyT2-mediated [3H]glycine uptake up to 30 μM concentration. There is no significant species difference in the pharmacology for RG1678 based on the ability of the compound to displace [3H]ORG24598. In hippocampal CA1 pyramidal cells, RG1678 enhances NMDA-dependent long-term potentiation (LTP) at 30 nM (213 ± 18%; n=7), 100 nM (269 ± 44%, n=13) but not at 300 nM (152 ± 14%; n = 9)[1].
In vivo
Administration of RG1678 produces a long-lasting (>3h) dose-dependent increase in extracellular glycine levels both in microdialysis experiments conducted in rats and CSF of rats. In mice, RG1678 dose-dependently and significantly attenuates hyperlocomotion induced by the psychostimulant D-amphetamine. RG1678 also prevents the hyper-response to D-amphetamine challenge in rats treated chronically with phencyclidine, an NMDA receptor open-channel blocker[1].
Kinase Assay
Association and dissociation kinetic analysis of [3H]ORG24598 to hGlyT1 and ratforebrain membranes is performed. [3H]ORG24598 binding experiments are performed using membranes from CHO cells expressing hGlyT1b and also in membranes from mouse, rat, monkey, and dogforebrains. Saturation isotherms are determined by adding [3H]ORG24598 to rat, mouse, monkey, and dog forebrain membranes (40 μg/well) and cell membranes (10 μg/well) in a total volume of 500 μL for 3 h at room temperature. Saturation binding experiments are analyzed by an Excel-based curve-fitting program using the Michaelis-Menten equation derived from the equation of a bimolecular reaction and the law of mass action:B=(Bmax×[F])/(Kd+[F]), where B is the amount of ligand bound at equilibrium, Bmax the maximum number of binding sites, [F] the concentration of free ligand, and Kd the ligand dissociation constant. For inhibition experiments, membranes are incubated with 3 nM [3H]ORG24598 and 10 concentrations of Bitopertin for 1 h at room temperature. Schild analysis is performed in the presence of increasing concentrations of [3H]ORG24598 (1-300 nM). IC50 values are derived as described above. Ki values are calculated according to the following equation: Ki=IC50/(1+[L]/Kd)[1].
Animal Research
Bitopertin (RG1678) is dissolved in H2O with 0.3% Tween 80 (Mice)[1]. Bitopertin (RG1678) is prepared in Polysorbate 80, HEC, Methyl- and Propylparaben pH 6.0 (Rats)[1].Male NMRI mice (20-30 g) are treated with Bitopertin (0.3, 3, 1, and 10 mg/kg p.o.) or vehicle (p.o.). After 1 min, L-687,414 (50 mg/kg s.c.) or vehicle is given. After 15 min of habituation in the activity chambers, horizontal activity is recorded for 60 min. The time course of Bitopertin effects on L-678,414-induced hyperactivity is also examined; locomotor activity is assessed 2.5, 4.5, and 24 h after administration of Bitopertin (L-678,414 is always given 15 min before the activity procedure). In addition, the effect of subchronic Bitopertin is investigated. Mice receive vehicle or Bitopertin (1 mg/kg p.o.) for 4 consecutive days and L-678,414-induced hyperactivity is evaluated on day 5. Wistar rats receive a 14-day treatment of PCP HC1 (5 mg/kg) or vehicle (NaCl 0.9%, 5 mL/kg i.p.). 24 h following the last injection, rats (6-18 per group) are allowed to individually habituate to the test boxes for 30 min. Rats then received Bitopertin (1, 3, 10 mg/kg p.o.) or vehicle (Polysorbate 80, HEC, Methyl- and Propylparaben pH 6.0; 5 mL/kg p.o.), followed after 1 h by 1 mg/kg D-amphetamine or vehicle i.p. Horizontal activity is recorded directly after the administration of Bitopertin until 120 min after dosing with amphetamine. Data are analyzed by ANOVA supplemented by Fischer's least significant difference post hoc test.
AliasPaliflutine, RO4917838, RG1678
Chemical Properties
Molecular Weight543.46
FormulaC21H20F7N3O4S
Cas No.845614-11-1
Storage & Solubility Information
StoragePowder: -20°C for 3 years | In solvent: -80°C for 1 year
Solubility Information
DMSO: 50 mg/mL (92 mM)
H2O: Insoluble
Ethanol: 5 mg/mL
Solution Preparation Table
DMSO
1mg5mg10mg50mg
100 mM0.0184 mL0.0920 mL0.1840 mL0.9200 mL

Calculator

  • Molarity Calculator
  • Dilution Calculator
  • Reconstitution Calculator
  • Molecular Weight Calculator

In Vivo Formulation Calculator (Clear solution)

Please enter your animal experiment information in the following box and click Calculate to obtain the mother liquor preparation method and in vivo formula preparation method:
For example, your dosage is 10 mg/kg,each TargetMol | Animal experiments animal weighs 20 g, and the dosage volume is 100 μL. A total of TargetMol | Animal experiments 10 animals were administered, and the formula you used is 5% TargetMol | reagent DMSO+30% PEG300+5% Tween 80+60% ddH2O. So your working solution concentration is 2 mg/mL.
Mother liquor preparation method: 2 mg of drug dissolved in 50 μLDMSOTargetMol | reagent (mother liquor concentration of 40 mg/mL), if you need to configure a concentration that exceeds the solubility of the product, please contact us first.
Preparation method for in vivo formula: Take 50 μLDMSOTargetMol | reagent main solution, add 300 μLPEG300TargetMol | reagent mix well and clarify, then add 50 more μLTween 80, mix well and clarify, then add 600 more μLddH2OTargetMol | reagent mix well and clarify.
1 Enter information below:
mg/kg
g
μL
2 Enter the in vivo formulation:
% DMSO
%
%Tween 80
%ddH2O

Dose Conversion

You can also refer to dose conversion for different animals. More

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords