Home Tools
Log in
Cart

Myomodulin acetate(110570-93-9 free base)

Catalog No. TP1852L   CAS TP1852L

Myomodulin acetate is present in two identified aplysia neurons that contain myomodulin A the ARC motor neuron B16 and the abdominal neuron L10.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Myomodulin acetate(110570-93-9 free base), CAS TP1852L
Please contact us for prices and availability for the specification of product you are interested at.
Product consultation
Get quote
Purity 98%
Biological Description
Chemical Properties
Storage & Solubility Information
Description Myomodulin acetate is present in two identified aplysia neurons that contain myomodulin A the ARC motor neuron B16 and the abdominal neuron L10.
In vitro Myomodulin decreases period and increases spike frequency in oscillator heart interneurons. Myomodulin enhances the hyperpolarization-activated cation current and inhibits the electrogenic Na/K pump[1]. A myomodulin peptide has been suggested to mediate the response of the giant glial cells to stimulation of the Leydig interneuron in the central nervous system of the leech Hirudo medicinalis. The peptide evokes a membrane outward current (EC50 approximately 2 μM), which neither desensitizes nor shows any sign of run-down, and elicits a K+ conductance increase of the glial cell membrane[3]. Myomodulin modulate ion channels in a wide variety of organisms including Aplysia, Lymnaea, and Pleurobranchaea. Myomodulin differentially modulates the potassium currents and reduces the amplitude of the Ca2+ current by 20%[2].
Molecular Weight 906.17
Formula C38H71N11O10S2
CAS No. TP1852L

Storage

Powder: -20°C for 3 years

In solvent: -80°C for 2 years

Solubility Information

( < 1 mg/ml refers to the product slightly soluble or insoluble )

Citations

References and Literature
1. Tobin AE, et al. Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons. J Neurophysiol. 2005 Dec;94(6):3938-50. 2. Wang Y, et al. Modulatory effects of myomodulin on the excitability and membrane currents in Retzius cells of the leech. J Neurophysiol. 1999 Jul;82(1):216-25. 3. Britz FC, et al. Membrane responses of the leech giant glial cell to the peptide transmitter myomodulin. Peptides. 2002 Dec;23(12):2117-25.

Related compound libraries

This product is contained In the following compound libraries:
Peptide Compound Library Bioactive Compound Library

Related Products

Related compounds with same targets
Vernakalant Phe-Met-Arg-Phe, amide acetate Myomodulin acetate(110570-93-9 free base) Myomodulin Thevetin B Dihydroisotanshinone I VU0134992 Dihydroberberine

Dose Conversion

You can also refer to dose conversion for different animals. More

In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

Calculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.