Home Tools
Log in
Cart

Lu49888 HCl

Catalog No. T32912   CAS 109293-20-1
Synonyms: Azidopamil, LU49888, LU 49888, Ludopamil, LU-49888

LU 49888 is a photoaffinity analog of verapamil that has been used to identify specific binding sites for phenylalkylamines of calcium channels present in rabbit skeletal muscle microsomes.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Lu49888 HCl Chemical Structure
Lu49888 HCl, CAS 109293-20-1
Pack Size Availability Price/USD Quantity
25 mg 6-8 weeks $ 1,520.00
50 mg 6-8 weeks $ 1,980.00
100 mg 6-8 weeks $ 2,500.00
Bulk Inquiry
Get quote
This compound is a customized synthesis product. We have a strong synthesis team with excellent synthesis technology and capabilities. However, due to various objective factors, there is a low probability that the synthesis will not be successful. If you need to learn more, please feel free to consult us, we will serve you wholeheartedly.
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description LU 49888 is a photoaffinity analog of verapamil that has been used to identify specific binding sites for phenylalkylamines of calcium channels present in rabbit skeletal muscle microsomes.
Synonyms Azidopamil, LU49888, LU 49888, Ludopamil, LU-49888
Molecular Weight 502.06
Formula C26H36ClN5O3
CAS No. 109293-20-1

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

TargetMolReferences and Literature

1. Sieber M, Nastainczyk W, Zubor V, Wernet W, Hofmann F. The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur J Biochem. 1987 Aug 17;167(1):117-22. PubMed PMID: 2441986. 2. Striessnig J, Knaus HG, Grabner M, Moosburger K, Seitz W, Lietz H, Glossmann H. Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett. 1987 Feb 23;212(2):247-53. PubMed PMID: 2434359. 3. Qian XD, Beck WT. Binding of an optically pure photoaffinity analogue of verapamil, LU-49888, to P-glycoprotein from multidrug-resistant human leukemic cell lines. Cancer Res. 1990 Feb 15;50(4):1132-7. PubMed PMID: 1967551. 4. Striessnig J, Glossmann H, Catterall WA. Identification of a phenylalkylamine binding region within the alpha 1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9108-12. PubMed PMID: 2174553; PubMed Central PMCID: PMC55113.

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Lu49888 HCl 109293-20-1 Azidopamil LU49888 LU 49888 Ludopamil Lu-49888 HCl LU-49888 inhibitor inhibit

 

TargetMol