Home Tools
Log in
Cart

KMN-80

Catalog No. T37441   CAS 1628759-75-0

The prostaglandin E receptor 4 (EP4) is one of four G protein-coupled receptors that mediate the actions of prostaglandin E2 . Binding of PGE2 to the EP4 receptor causes an increase in intracellular cyclic AMP, which plays important roles in bone formation and resorption, cancer, and atherosclerosis. KMN-80 is a substituted γ-lactam (pyrrolidinone) derivative of PGE1 that acts as a selective and potent agonist of EP4 with an IC50 value of 3 nM (IC50 = 1.4 μM for EP3 and < 10 μM for all other prostanoid receptors). In functional assays it has been shown to stimulate secreted alkaline phosphatase gene reporter activity in EP4-transfected HEK293 cells with an EC50 value of 0.19 nM, demonstrating <5,000 and 50,000-fold selectivity against EP2 and TP, respectively. KMN-80 can induce the differentiation of bone marrow stem cells from both young and aged rats into osteoblasts in vitro (EC50s = 20 and 153 nM, respectively) and exhibits favorable tolerability up to at least 10 μM, whereas the EP4 agonist L-902,688 is highly cytotoxic at similar concentrations in these cells. KMN-80 has been used to repair calvarial defects in an in vivo rat craniomaxillofacial reconstruction model (rate of reduction in defect size equivalent to BMP-2 treated rats) and to promote bone formation in a rat incisor tooth socket model.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
KMN-80 Chemical Structure
KMN-80, CAS 1628759-75-0
Pack Size Availability Price/USD Quantity
500 μg 35 days $ 268.00
1 mg 35 days $ 423.00
Bulk Inquiry
Get quote
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description The prostaglandin E receptor 4 (EP4) is one of four G protein-coupled receptors that mediate the actions of prostaglandin E2 . Binding of PGE2 to the EP4 receptor causes an increase in intracellular cyclic AMP, which plays important roles in bone formation and resorption, cancer, and atherosclerosis. KMN-80 is a substituted γ-lactam (pyrrolidinone) derivative of PGE1 that acts as a selective and potent agonist of EP4 with an IC50 value of 3 nM (IC50 = 1.4 μM for EP3 and > 10 μM for all other prostanoid receptors). In functional assays it has been shown to stimulate secreted alkaline phosphatase gene reporter activity in EP4-transfected HEK293 cells with an EC50 value of 0.19 nM, demonstrating >5,000 and 50,000-fold selectivity against EP2 and TP, respectively. KMN-80 can induce the differentiation of bone marrow stem cells from both young and aged rats into osteoblasts in vitro (EC50s = 20 and 153 nM, respectively) and exhibits favorable tolerability up to at least 10 μM, whereas the EP4 agonist L-902,688 is highly cytotoxic at similar concentrations in these cells. KMN-80 has been used to repair calvarial defects in an in vivo rat craniomaxillofacial reconstruction model (rate of reduction in defect size equivalent to BMP-2 treated rats) and to promote bone formation in a rat incisor tooth socket model.
Targets&IC50 EP3 receptor:1.5 μM (IC50), EP3A receptor (human):880 nM (Ki), EP4 receptor:3 nM (IC50), EP4 (human):2.349 nM (Ki)
Molecular Weight 363.49
Formula C21H33NO4
CAS No. 1628759-75-0

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Solubility Information

DMF: 20 mg/mL

Ethanol: 25 mg/mL

Ethanol:PBS(pH 7.2) (1:1): 0.5 mg/mL

DMSO: 15 mg/mL

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

KMN-80 1628759-75-0 KMN80 KMN 80 inhibitor inhibit

 

TargetMol