Home Tools
Log in
Cart

Ru360

Catalog No. T37297   CAS 133399-54-9

Ru360, an oxygen-bridged dinuclear ruthenium amine complex, is a selective mitochondrial calcium uptake inhibitor. Ru360 potently inhibits Ca2+ uptake into mitochondria with an IC50 of 0.184 nM. Ru360 binds to mitochondria with high affinity (Kd of 0.34 nM). Ru360 has antiarrhythmic and cardioprotective effects[1][2].

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Ru360 Chemical Structure
Ru360, CAS 133399-54-9
Pack Size Availability Price/USD Quantity
1 mg Inquiry Inquiry
Bulk Inquiry
Get quote
Contact us for more batch information
Biological Description
Chemical Properties
Storage & Solubility Information
Description Ru360, an oxygen-bridged dinuclear ruthenium amine complex, is a selective mitochondrial calcium uptake inhibitor. Ru360 potently inhibits Ca2+ uptake into mitochondria with an IC50 of 0.184 nM. Ru360 binds to mitochondria with high affinity (Kd of 0.34 nM). Ru360 has antiarrhythmic and cardioprotective effects[1][2].
In vitro Ru360 permeates slowly into the cell, and specifically inhibits mitochondrial calcium uptake in intact cardiomyocytes and in isolated heart. 1 μm Ru360 is taken up by myocardial cells and accumulated in the cytosol in a biphasic manner[1]. During pelleting hypoxia, Ru360 (10 µM) significantly improves cell viability in wild type cardiomyocytes[3].
In vivo Ru360 (15-50 nmol/kg) treatment abolishes the incidence of arrhythmias and haemodynamic dysfunction elicited by reperfusion in a whole rat model. Ru360 administration partially inhibits calcium uptake, preventing mitochondria from depolarization by the opening of the mitochondrial permeability transition pore (mPTP)[1].
Molecular Weight 550.77
Formula C2H26N8O5Ru2.3Cl
CAS No. 133399-54-9

Storage

Powder: -20°C for 3 years | In solvent: -80°C for 1 year

TargetMolReferences and Literature

1. G de J García-Rivas, et al. Ru360, a Specific Mitochondrial Calcium Uptake Inhibitor, Improves Cardiac Post-Ischaemic Functional Recovery in Rats in Vivo. Br J Pharmacol. 2006 Dec;149(7):829-37. 2. M A Matlib, et al. Oxygen-bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake Into Mitochondria in Vitro and in Situ in Single Cardiac Myocytes. J Biol Chem. 1998 Apr 24;273(17):10223-31. 3. Lukas J Motloch, et al. UCP2 Modulates Cardioprotective Effects of Ru360 in Isolated Cardiomyocytes During Ischemia. Pharmaceuticals (Basel). 2015 Aug 4;8(3):474-82.

TargetMolDose Conversion

You can also refer to dose conversion for different animals. More

TargetMol In vivo Formulation Calculator (Clear solution)

Step One: Enter information below
Dosage
mg/kg
Average weight of animals
g
Dosing volume per animal
ul
Number of animals
Step Two: Enter the in vivo formulation
% DMSO
%
% Tween 80
% ddH2O
Calculate Reset

TargetMolCalculator

Molarity Calculator
Dilution Calculator
Reconstitution Calculation
Molecular Weight Calculator
=
X
X

Molarity Calculator allows you to calculate the

  • Mass of a compound required to prepare a solution of known volume and concentration
  • Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Concentration of a solution resulting from a known mass of compound in a specific volume
See Example

An example of a molarity calculation using the molarity calculator
What is the mass of compound required to make a 10 mM stock solution in 10 ml of water given that the molecular weight of the compound is 197.13 g/mol?
Enter 197.13 into the Molecular Weight (MW) box
Enter 10 into the Concentration box and select the correct unit (millimolar)
Enter 10 into the Volume box and select the correct unit (milliliter)
Press calculate
The answer of 19.713 mg appears in the Mass box

X
=
X

Calculator the dilution required to prepare a stock solution

Calculate the dilution required to prepare a stock solution
The dilution calculator is a useful tool which allows you to calculate how to dilute a stock solution of known concentration. Enter C1, C2 & V2 to calculate V1.

See Example

An example of a dilution calculation using the Tocris dilution calculator
What volume of a given 10 mM stock solution is required to make 20ml of a 50 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=50 μM, V2=20 ml and V1 is the unknown:
Enter 10 into the Concentration (start) box and select the correct unit (millimolar)
Enter 50 into the Concentration (final) box and select the correct unit (micromolar)
Enter 20 into the Volume (final) box and select the correct unit (milliliter)
Press calculate
The answer of 100 microliter (0.1 ml) appears in the Volume (start) box

=
/

Calculate the volume of solvent required to reconstitute your vial.

The reconstitution calculator allows you to quickly calculate the volume of a reagent to reconstitute your vial.
Simply enter the mass of reagent and the target concentration and the calculator will determine the rest.

g/mol

Enter the chemical formula of a compound to calculate its molar mass and elemental composition

Tip: Chemical formula is case sensitive: C10H16N2O2 c10h16n2o2

Instructions to calculate molar mass (molecular weight) of a chemical compound:
To calculate molar mass of a chemical compound, please enter its chemical formula and click 'Calculate'.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
Molecular mass (molecular weight) is the mass of one molecule of a substance and is expressed n the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.

bottom

Tech Support

Please see Inhibitor Handling Instructions for more frequently ask questions. Topics include: how to prepare stock solutions, how to store products, and cautions on cell-based assays & animal experiments, etc.

Keywords

Ru360 133399-54-9 Ru-360 inhibitor inhibit

 

TargetMol