Home Tools
Log in
Cart

AHSP Protein, Human, Recombinant

Catalog No. TMPY-03603
Synonyms: ERAF, alpha hemoglobin stabilizing protein, α hemoglobin stabilizing protein, EDRF

AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈1 μm(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22 ℃. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ .2 s(-1)) is ~1-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
AHSP Protein, Human, Recombinant
Pack Size Availability Price/USD Quantity
100 μg 5 days $ 801.00
Bulk Inquiry
Get quote
Contact us for more batch information
Biological Description
Technical Params
Product Properties
References and Literature
Description AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈1 μm(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22 ℃. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ .2 s(-1)) is ~1-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.
Species Human
Expression System E. coli
Tag Tag Free
Accession Number Q9NZD4
Synonyms ERAF, alpha hemoglobin stabilizing protein, α hemoglobin stabilizing protein, EDRF
Construction A DNA sequence encoding human ERAF (Q9NZD4) (Met1-Ser102) was expressed.
Protein Purity > 90 % as determined by SDS-PAGE
Molecular Weight 11.8 kDa (predicted)
Endotoxin Please contact us for more information.
Formulation Lyophilized from sterile PBS, pH 7.4. Please contact us for any concerns or special requirements. Normally 5 % - 8 % trehalose, mannitol and 0. 01% Tween 80 are added as protectants before lyophilization. Please refer to the specific buffer information in the hard copy of CoA.
Reconstitution A hardcopy of datasheet with reconstitution instructions is sent along with the products. Please refer to it for detailed information.
Stability & Storage

Samples are stable for up to twelve months from date of receipt at -20℃ to -80℃. Store it under sterile conditions at -20℃ to -80℃. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

Shipping

In general, recombinant proteins are provided as lyophilized powder which are shipped at ambient temperature.Bulk packages of recombinant proteins are provided as frozen liquid. They are shipped out with blue ice unless customers require otherwise.

Research Background AHSP, also known as ERAF, is a conserved mammalian erythroid protein which belongs to the AHSP family. It is expressed in blood and bone marrow. AHSP facilitates the production of Hemoglobin A by stabilizing free α-globin. It rapidly binds to ferrous α with association (k'(AHSP)) and dissociation (k(AHSP)) rate constants of ≈1 μm(-1) s(-1) and .2 s(-1), respectively, at pH 7.4 at 22 ℃. A small slow phase was observed when AHSP binds to excess ferrous αCO. This slow phase appears to be due to cis to trans prolyl isomerization of the Asp(29)-Pro(3) peptide bond in wild-type AHSP because it was absent when αCO was mixed with P3A and P3W AHSP, which are fixed in the trans conformation. This slow phase was also absent when met(Fe(3+))-α reacted with wild-type AHSP, suggesting that met-α is capable of rapidly binding to either Pro(3) conformer. Both wild-type and Pro(3)-substituted AHSPs drive the formation of a met-α hemichrome conformation following binding to either met- or oxy(Fe(2+))-α. The dissociation rate of the met-α·AHSP complex (k(AHSP) ≈ .2 s(-1)) is ~1-fold slower than that for ferrous α·AHSP complexes, resulting in a much higher affinity of AHSP for met-α. Thus, in vivo, AHSP acts as a molecular chaperone by rapidly binding and stabilizing met-α hemichrome folding intermediates. The low rate of met-α dissociation also allows AHSP to have a quality control function by kinetically trapping ferric α and preventing its incorporation into less stable mixed valence Hemoglobin A tetramers. Reduction of AHSP-bound met-α allows more rapid release to β subunits to form stable fully, reduced hemoglobin dimers and tetramers.

References and Literature

Calculator

Reconstitution Calculator
Recombinant Proteins Dilute Calculator
Specific Activity Calculator
=
÷
X
=
X
(Unit/mg)
= 106 ÷
ng/mL

bottom

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords

AHSP Protein, Human, Recombinant ERAF a hemoglobin stabilizing protein alpha hemoglobin stabilizing protein α hemoglobin stabilizing protein EDRF recombinant recombinant-proteins proteins protein

 

TargetMol