- Remove All
Your shopping cart is currently empty
Cholera toxin (CT) produced by Vibrio cholerae causes the devastating diarrhea of cholera by catalyzing the ADP-ribosylation of the alpha subunit of the intestinal Gs protein (Gsalpha), leading to characteristic water and electrolyte losses. Mammalian cells contain ADP-ribosyltransferases similar to CT and an ADP-ribosyl(arginine)protein hydrolase (ADPRH), which cleaves the ADP-ribose-(arginine)protein bond, regenerating native protein and completing an ADP-ribosylation cycle. CT-catalyzed ADP-ribosylation of cell proteins can be counteracted by ADPRH, which could function as a modifier gene in disease. Further, our study demonstrates that enzymatic cross talk exists between bacterial toxin ADP-ribosyltransferases and host ADP-ribosylation cycles. In disease, toxin-catalyzed ADP-ribosylation overwhelms this potential host defense system, resulting in persistence of ADP-ribosylation and intoxication of the cell. Mono-ADP-ribosylation is a reversible modification of proteins with NAD:arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases (ADPRH) catalyzing the opposing arms of an ADP-ribosylation cycle. The ADPRH cDNA had been cloned from human, rat, and mouse tissues and high levels of mRNA were found in brain, spleen, and testis. Human ADP-ribosylhydrolase 1 (hARH1, ADPRH) cleaves the glycosidic bond of ADP-ribose attached to an Arg residue of a protein.

| Pack Size | Price | Availability | Quantity |
|---|---|---|---|
| 5 μg | $79 | 7-10 days | |
| 10 μg | $129 | 7-10 days | |
| 20 μg | $208 | 7-10 days | |
| 50 μg | $419 | 7-10 days | |
| 100 μg | $812 | 7-10 days |
| Biological Activity | Activity testing is in progress. It is theoretically active, but we cannot guarantee it. If you require protein activity, we recommend choosing the eukaryotic expression version first. |
| Description | Cholera toxin (CT) produced by Vibrio cholerae causes the devastating diarrhea of cholera by catalyzing the ADP-ribosylation of the alpha subunit of the intestinal Gs protein (Gsalpha), leading to characteristic water and electrolyte losses. Mammalian cells contain ADP-ribosyltransferases similar to CT and an ADP-ribosyl(arginine)protein hydrolase (ADPRH), which cleaves the ADP-ribose-(arginine)protein bond, regenerating native protein and completing an ADP-ribosylation cycle. CT-catalyzed ADP-ribosylation of cell proteins can be counteracted by ADPRH, which could function as a modifier gene in disease. Further, our study demonstrates that enzymatic cross talk exists between bacterial toxin ADP-ribosyltransferases and host ADP-ribosylation cycles. In disease, toxin-catalyzed ADP-ribosylation overwhelms this potential host defense system, resulting in persistence of ADP-ribosylation and intoxication of the cell. Mono-ADP-ribosylation is a reversible modification of proteins with NAD:arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases (ADPRH) catalyzing the opposing arms of an ADP-ribosylation cycle. The ADPRH cDNA had been cloned from human, rat, and mouse tissues and high levels of mRNA were found in brain, spleen, and testis. Human ADP-ribosylhydrolase 1 (hARH1, ADPRH) cleaves the glycosidic bond of ADP-ribose attached to an Arg residue of a protein. |
| Species | Human |
| Expression System | E. coli |
| Tag | N-His |
| Accession Number | P54922 |
| Synonyms | ARH1,ADP-ribosylarginine hydrolase |
| Construction | A DNA sequence encoding the human ADPRH (NP_001116.1) (Met1-Leu351) was expressed with a polyhistidine tag at the N-terminus. Predicted N terminal: His |
| Protein Purity | > 90 % as determined by SDS-PAGE |
| Molecular Weight | 41.7 kDa (predicted); 41 kDa (reducing conditions) |
| Endotoxin | Please contact us for more information. |
| Formulation | Lyophilized from a solution filtered through a 0.22 μm filter, containing PBS, pH 7.4. Typically, a mixture containing 5% to 8% trehalose, mannitol, and 0.01% Tween 80 is incorporated as a protective agent before lyophilization. |
| Reconstitution | A Certificate of Analysis (CoA) containing reconstitution instructions is included with the products. Please refer to the CoA for detailed information. |
| Stability & Storage | It is recommended to store recombinant proteins at -20°C to -80°C for future use. Lyophilized powders can be stably stored for over 12 months, while liquid products can be stored for 6-12 months at -80°C. For reconstituted protein solutions, the solution can be stored at -20°C to -80°C for at least 3 months. Please avoid multiple freeze-thaw cycles and store products in aliquots. |
| Shipping | In general, Lyophilized powders are shipping with blue ice. |
| Research Background | Cholera toxin (CT) produced by Vibrio cholerae causes the devastating diarrhea of cholera by catalyzing the ADP-ribosylation of the alpha subunit of the intestinal Gs protein (Gsalpha), leading to characteristic water and electrolyte losses. Mammalian cells contain ADP-ribosyltransferases similar to CT and an ADP-ribosyl(arginine)protein hydrolase (ADPRH), which cleaves the ADP-ribose-(arginine)protein bond, regenerating native protein and completing an ADP-ribosylation cycle. CT-catalyzed ADP-ribosylation of cell proteins can be counteracted by ADPRH, which could function as a modifier gene in disease. Further, our study demonstrates that enzymatic cross talk exists between bacterial toxin ADP-ribosyltransferases and host ADP-ribosylation cycles. In disease, toxin-catalyzed ADP-ribosylation overwhelms this potential host defense system, resulting in persistence of ADP-ribosylation and intoxication of the cell. Mono-ADP-ribosylation is a reversible modification of proteins with NAD:arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases (ADPRH) catalyzing the opposing arms of an ADP-ribosylation cycle. The ADPRH cDNA had been cloned from human, rat, and mouse tissues and high levels of mRNA were found in brain, spleen, and testis. Human ADP-ribosylhydrolase 1 (hARH1, ADPRH) cleaves the glycosidic bond of ADP-ribose attached to an Arg residue of a protein. |

Copyright © 2015-2025 TargetMol Chemicals Inc. All Rights Reserved.