Home Tools
Log in
Cart

Delta-theraphotoxin-Hm1a Protein, Heteroscodra maculata, Recombinant (His & Myc & SUMO)

Catalog No. TMPH-00818
Synonyms: Kappa-TRTX-Hm1a, Delta-TRTX-Hm1a, Heteroscodratoxin-1, Kappa-theraphotoxin-Hm1a, HmTx1, Delta-theraphotoxin-Hm1a

Gating-modifier toxin that potently inhibits inactivation of the mammalian Nav1.1/SCN1A sodium channel (EC(50)=38 nM). Also moderately inhibits inactivation of Nav1.2/SCN2A (EC(50)=236 nM) and Nav1.3/SCN3A (EC(50)=220 nM) when the channels are expressed in oocytes without the beta-1 auxiliary subunit. Does not inhibit inactivation of Nav1.2/SCN2A when the channel is coexpressed with the beta-1 auxiliary subunit. When tested on Nav1.1/SCN1A channel, it enhances peak current amplitude and potently delays channel inactivation in a dose-dependent manner, leading to a large sustained current. It has no effect on the voltage-dependence of steady-state activation, and induces a depolarizing shift in the voltage dependence of inactivation. In addition, it does not modify the recovery from fast inactivation in Nav1.1/SCN1A. The binding affinity and subtype selectivity of the toxin towards Nav1.1/SCN1A channel is determined by residues within both the S1-S2 and S3-S4 loops of the domain IV voltage sensor of the channel. This toxin also weakly inhibits several subtypes of voltage-gated potassium channels. It moderately blocks Kv2.1/KCNB1 (23% inhibition at 100 nM), Kv2.2/KCNB2 (19.7% at 100 nM and 51% at 300 nM), Kv4.1/KCND1 (IC(50)=280 nM), Kv4.2/KCND2 (39% at 300 nM) and Kv4.3/KCND3 (43% at 300 nM). In vivo, intracerebroventricular injection into mice elicits convulsions, spasms, tremors and rapid death. When injected into mouse hindpaw, the toxin elicits an immediate and robust response to pain. However, intraplantar injection of toxin does not cause neurogenic inflammation or alter sensitivity to heat, indicative of a modality-specific effect on mechanosensitive neurons. In Dravet syndrome mice model, intracerebroventricular infusion of this peptide rescues mice from seizures and premature death.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Delta-theraphotoxin-Hm1a Protein, Heteroscodra maculata, Recombinant (His & Myc & SUMO)
Pack Size Availability Price/USD Quantity
20 μg 20 days $ 360.00
100 μg 20 days $ 678.00
1 mg 20 days $ 2,300.00
Bulk Inquiry
Get quote
Contact us for more batch information
Biological Description
Technical Params
Product Properties
Description Gating-modifier toxin that potently inhibits inactivation of the mammalian Nav1.1/SCN1A sodium channel (EC(50)=38 nM). Also moderately inhibits inactivation of Nav1.2/SCN2A (EC(50)=236 nM) and Nav1.3/SCN3A (EC(50)=220 nM) when the channels are expressed in oocytes without the beta-1 auxiliary subunit. Does not inhibit inactivation of Nav1.2/SCN2A when the channel is coexpressed with the beta-1 auxiliary subunit. When tested on Nav1.1/SCN1A channel, it enhances peak current amplitude and potently delays channel inactivation in a dose-dependent manner, leading to a large sustained current. It has no effect on the voltage-dependence of steady-state activation, and induces a depolarizing shift in the voltage dependence of inactivation. In addition, it does not modify the recovery from fast inactivation in Nav1.1/SCN1A. The binding affinity and subtype selectivity of the toxin towards Nav1.1/SCN1A channel is determined by residues within both the S1-S2 and S3-S4 loops of the domain IV voltage sensor of the channel. This toxin also weakly inhibits several subtypes of voltage-gated potassium channels. It moderately blocks Kv2.1/KCNB1 (23% inhibition at 100 nM), Kv2.2/KCNB2 (19.7% at 100 nM and 51% at 300 nM), Kv4.1/KCND1 (IC(50)=280 nM), Kv4.2/KCND2 (39% at 300 nM) and Kv4.3/KCND3 (43% at 300 nM). In vivo, intracerebroventricular injection into mice elicits convulsions, spasms, tremors and rapid death. When injected into mouse hindpaw, the toxin elicits an immediate and robust response to pain. However, intraplantar injection of toxin does not cause neurogenic inflammation or alter sensitivity to heat, indicative of a modality-specific effect on mechanosensitive neurons. In Dravet syndrome mice model, intracerebroventricular infusion of this peptide rescues mice from seizures and premature death.
Species Heteroscodra maculata
Expression System E. coli
Tag N-terminal 6xHis-SUMO-tagged and C-terminal Myc-tagged
Accession Number P60992
Synonyms Kappa-TRTX-Hm1a, Delta-TRTX-Hm1a, Heteroscodratoxin-1, Kappa-theraphotoxin-Hm1a, HmTx1, Delta-theraphotoxin-Hm1a
Amino Acid ECRYLFGGCSSTSDCCKHLSCRSDWKYCAWDGTFS Note: The complete sequence including tag sequence, target protein sequence and linker sequence could be provided upon request.
Construction 1-35 aa
Protein Purity > 85% as determined by SDS-PAGE.
Molecular Weight 21.5 kDa as predicted
Formulation Tris-based buffer,50% glycerol
Reconstitution A hardcopy of COA with reconstitution instructions is sent along with the products. Please refer to it for detailed information.
Stability & Storage

Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.

Shipping

In general, recombinant proteins are provided as lyophilized powder which are shipped at ambient temperature. Bulk packages of recombinant proteins are provided as frozen liquid. They are shipped out with blue ice unless customers require otherwise.

Research Background Gating-modifier toxin that potently inhibits inactivation of the mammalian Nav1.1/SCN1A sodium channel (EC(50)=38 nM). Also moderately inhibits inactivation of Nav1.2/SCN2A (EC(50)=236 nM) and Nav1.3/SCN3A (EC(50)=220 nM) when the channels are expressed in oocytes without the beta-1 auxiliary subunit. Does not inhibit inactivation of Nav1.2/SCN2A when the channel is coexpressed with the beta-1 auxiliary subunit. When tested on Nav1.1/SCN1A channel, it enhances peak current amplitude and potently delays channel inactivation in a dose-dependent manner, leading to a large sustained current. It has no effect on the voltage-dependence of steady-state activation, and induces a depolarizing shift in the voltage dependence of inactivation. In addition, it does not modify the recovery from fast inactivation in Nav1.1/SCN1A. The binding affinity and subtype selectivity of the toxin towards Nav1.1/SCN1A channel is determined by residues within both the S1-S2 and S3-S4 loops of the domain IV voltage sensor of the channel. This toxin also weakly inhibits several subtypes of voltage-gated potassium channels. It moderately blocks Kv2.1/KCNB1 (23% inhibition at 100 nM), Kv2.2/KCNB2 (19.7% at 100 nM and 51% at 300 nM), Kv4.1/KCND1 (IC(50)=280 nM), Kv4.2/KCND2 (39% at 300 nM) and Kv4.3/KCND3 (43% at 300 nM). In vivo, intracerebroventricular injection into mice elicits convulsions, spasms, tremors and rapid death. When injected into mouse hindpaw, the toxin elicits an immediate and robust response to pain. However, intraplantar injection of toxin does not cause neurogenic inflammation or alter sensitivity to heat, indicative of a modality-specific effect on mechanosensitive neurons. In Dravet syndrome mice model, intracerebroventricular infusion of this peptide rescues mice from seizures and premature death.

Calculator

Reconstitution Calculator
Recombinant Proteins Dilute Calculator
Specific Activity Calculator
=
÷
X
=
X
(Unit/mg)
= 106 ÷
ng/mL

bottom

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords

Delta-theraphotoxin-Hm1a Protein, Heteroscodra maculata, Recombinant (His & Myc & SUMO) Kappa-TRTX-Hm1a Delta-TRTX-Hm1a Heteroscodratoxin-1 Kappa-theraphotoxin-Hm1a HmTx1 Delta-theraphotoxin-Hm1a recombinant recombinant-proteins proteins protein

 

TargetMol