Home Tools
Log in
Cart

BioH Protein, E. coli, Recombinant (His & Myc)

Catalog No. TMPH-00711
Synonyms: bioB, Carboxylesterase BioH, Biotin synthesis protein BioH, Pimeloyl-[acyl-carrier protein] methyl ester esterase, bioH

The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain p-nitrophenyl esters. Also displays a weak thioesterase activity. Can form a complex with CoA, and may be involved in the condensation of CoA and pimelic acid into pimeloyl-CoA, a precursor in biotin biosynthesis.; Catalyzes the hydrolysis of the methyl ester bond of dimethylbutyryl-S-methyl mercaptopropionate (DMB-S-MMP) to yield dimethylbutyryl mercaptopropionic acid (DMBS-MPA) during the biocatalytic conversion of simvastin acid from monacolin J acid. Can also use acyl carriers such as dimethylbutyryl-S-ethyl mercaptopropionate (DMB-S-EMP) and dimethylbutyryl-S-methyl thioglycolate (DMB-S-MTG) as the thioester substrates.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
BioH Protein, E. coli, Recombinant (His & Myc)
Pack Size Availability Price/USD Quantity
20 μg 20 days $ 360.00
100 μg 20 days $ 678.00
1 mg 20 days $ 2,300.00
Bulk Inquiry
Get quote
Contact us for more batch information
Biological Description
Technical Params
Product Properties
Description The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain p-nitrophenyl esters. Also displays a weak thioesterase activity. Can form a complex with CoA, and may be involved in the condensation of CoA and pimelic acid into pimeloyl-CoA, a precursor in biotin biosynthesis.; Catalyzes the hydrolysis of the methyl ester bond of dimethylbutyryl-S-methyl mercaptopropionate (DMB-S-MMP) to yield dimethylbutyryl mercaptopropionic acid (DMBS-MPA) during the biocatalytic conversion of simvastin acid from monacolin J acid. Can also use acyl carriers such as dimethylbutyryl-S-ethyl mercaptopropionate (DMB-S-EMP) and dimethylbutyryl-S-methyl thioglycolate (DMB-S-MTG) as the thioester substrates.
Species E. coli
Expression System E. coli
Tag N-terminal 10xHis-tagged and C-terminal Myc-tagged
Accession Number P13001
Synonyms bioB, Carboxylesterase BioH, Biotin synthesis protein BioH, Pimeloyl-[acyl-carrier protein] methyl ester esterase, bioH
Amino Acid MNNIWWQTKGQGNVHLVLLHGWGLNAEVWRCIDEELSSHFTLHLVDLPGFGRSRGFGALSLADMAEAVLQQAPDKAIWLGWSLGGLVASQIALTHPERVQALVTVASSPCFSARDEWPGIKPDVLAGFQQQLSDDFQRTVERFLALQTMGTETARQDARALKKTVLALPMPEVDVLNGGLEILKTVDLRQPLQNVSMPFLRLYGYLDGLVPRKVVPMLDKLWPHSESYIFAKAAHAPFISHPAEFCHLLVALKQRV Note: The complete sequence including tag sequence, target protein sequence and linker sequence could be provided upon request.
Construction 1-256 aa
Protein Purity > 90% as determined by SDS-PAGE.
Molecular Weight 35.9 kDa as predicted
Formulation If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution A hardcopy of COA with reconstitution instructions is sent along with the products. Please refer to it for detailed information.
Stability & Storage

Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.

Shipping

In general, recombinant proteins are provided as lyophilized powder which are shipped at ambient temperature. Bulk packages of recombinant proteins are provided as frozen liquid. They are shipped out with blue ice unless customers require otherwise.

Research Background The physiological role of BioH is to remove the methyl group introduced by BioC when the pimeloyl moiety is complete. It allows to synthesize pimeloyl-ACP via the fatty acid synthetic pathway through the hydrolysis of the ester bonds of pimeloyl-ACP esters. E.coli employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes. BioH shows a preference for short chain fatty acid esters (acyl chain length of up to 6 carbons) and short chain p-nitrophenyl esters. Also displays a weak thioesterase activity. Can form a complex with CoA, and may be involved in the condensation of CoA and pimelic acid into pimeloyl-CoA, a precursor in biotin biosynthesis.; Catalyzes the hydrolysis of the methyl ester bond of dimethylbutyryl-S-methyl mercaptopropionate (DMB-S-MMP) to yield dimethylbutyryl mercaptopropionic acid (DMBS-MPA) during the biocatalytic conversion of simvastin acid from monacolin J acid. Can also use acyl carriers such as dimethylbutyryl-S-ethyl mercaptopropionate (DMB-S-EMP) and dimethylbutyryl-S-methyl thioglycolate (DMB-S-MTG) as the thioester substrates.

Calculator

Reconstitution Calculator
Recombinant Proteins Dilute Calculator
Specific Activity Calculator
=
÷
X
=
X
(Unit/mg)
= 106 ÷
ng/mL

bottom

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords

BioH Protein, E. coli, Recombinant (His & Myc) bioB Carboxylesterase BioH Biotin synthesis protein BioH Pimeloyl-[acyl-carrier protein] methyl ester esterase bioH recombinant recombinant-proteins proteins protein

 

TargetMol