Home Tools
Log in
Cart

Human respiratory syncytial virus (RSV) (A2) Fusion glycoprotein/RSV-F Protein (His)

Catalog No. TMPY-01078
Synonyms: HRSVgp8, F Protein

Human respiratory syncytial virus (HRSV) is the most common etiological agent of acute lower respiratory tract disease in infants and can cause repeated infections throughout life. It is classified within the genus pneumovirus of the family paramyxoviridae. Like other members of the family, HRSV has two major surface glycoproteins (G and F) that play important roles in the initial stages of the infectious cycle. The G protein mediates attachment of the virus to cell surface receptors, while the F protein promotes fusion of the viral and cellular membranes, allowing entry of the virus ribonucleoprotein into the cell cytoplasm. The fusion (F) protein of RSV is synthesized as a nonfusogenic precursor protein (F), which during its migration to the cell surface is activated by cleavage into the disulfide-linked F1 and F2 subunits. This fusion is pH independent and occurs directly at the outer cell membrane, and the F2 subunit was identifed as the major determinant of RSV host cell specificity. The trimer of F1-F2 interacts with glycoprotein G at the virion surface. Upon binding of G to heparan sulfate, the hydrophobic fusion peptide is unmasked and induces the fusion between host cell and virion membranes. Notably, RSV fusion protein is unique in that it is able to interact directly with heparan sulfate and therefore is sufficient for virus infection. Furthermore, the fusion protein is also able to trigger p53-dependent apoptosis.

All products from TargetMol are for Research Use Only. Not for Human or Veterinary or Therapeutic Use.
Human respiratory syncytial virus (RSV) (A2) Fusion glycoprotein/RSV-F Protein (His)
Pack Size Availability Price/USD Quantity
100 μg In stock $ 648.00
200 μg 5 days $ 1,110.00
500 μg 5 days $ 2,240.00
Bulk Inquiry
Get quote
Select Batch  
Contact us for more batch information
Biological Description
Technical Params
Product Properties
References and Literature
Biological Information Testing in progress
Description Human respiratory syncytial virus (HRSV) is the most common etiological agent of acute lower respiratory tract disease in infants and can cause repeated infections throughout life. It is classified within the genus pneumovirus of the family paramyxoviridae. Like other members of the family, HRSV has two major surface glycoproteins (G and F) that play important roles in the initial stages of the infectious cycle. The G protein mediates attachment of the virus to cell surface receptors, while the F protein promotes fusion of the viral and cellular membranes, allowing entry of the virus ribonucleoprotein into the cell cytoplasm. The fusion (F) protein of RSV is synthesized as a nonfusogenic precursor protein (F), which during its migration to the cell surface is activated by cleavage into the disulfide-linked F1 and F2 subunits. This fusion is pH independent and occurs directly at the outer cell membrane, and the F2 subunit was identifed as the major determinant of RSV host cell specificity. The trimer of F1-F2 interacts with glycoprotein G at the virion surface. Upon binding of G to heparan sulfate, the hydrophobic fusion peptide is unmasked and induces the fusion between host cell and virion membranes. Notably, RSV fusion protein is unique in that it is able to interact directly with heparan sulfate and therefore is sufficient for virus infection. Furthermore, the fusion protein is also able to trigger p53-dependent apoptosis.
Species RSV
Expression System Baculovirus-Insect Cells
Tag His
Accession Number P03420.1
Synonyms HRSVgp8, F Protein
Construction A DNA sequence encoding the extracellular domain of human RSV Fusion glycoprotein (P03420.1) (Met1-Thr529) was expressed fused with a polyhistidine tag at the C-terminus.
Protein Purity > 95 % as determined by SDS-PAGE

Molecular Weight Approxiamtely 57.4 kDa
Endotoxin < 1.0 EU per μg of the protein as determined by the LAL method.
Formulation Lyophilized from sterile 50mM Tris, 100mM NaCl, pH 8.0, 10% glycerol. Please contact us for any concerns or special requirements. Normally 5 % - 8 % trehalose, mannitol and 0. 01% Tween 80 are added as protectants before lyophilization. Please refer to the specific buffer information in the hard copy of CoA.
Reconstitution A hardcopy of datasheet with reconstitution instructions is sent along with the products. Please refer to it for detailed information.
Stability & Storage

Samples are stable for up to twelve months from date of receipt at -20℃ to -80℃. Store it under sterile conditions at -20℃ to -80℃. It is recommended that the protein be aliquoted for optimal storage. Avoid repeated freeze-thaw cycles.

Shipping

In general, recombinant proteins are provided as lyophilized powder which are shipped at ambient temperature.Bulk packages of recombinant proteins are provided as frozen liquid. They are shipped out with blue ice unless customers require otherwise.

Research Background Human respiratory syncytial virus (HRSV) is the most common etiological agent of acute lower respiratory tract disease in infants and can cause repeated infections throughout life. It is classified within the genus pneumovirus of the family paramyxoviridae. Like other members of the family, HRSV has two major surface glycoproteins (G and F) that play important roles in the initial stages of the infectious cycle. The G protein mediates attachment of the virus to cell surface receptors, while the F protein promotes fusion of the viral and cellular membranes, allowing entry of the virus ribonucleoprotein into the cell cytoplasm. The fusion (F) protein of RSV is synthesized as a nonfusogenic precursor protein (F), which during its migration to the cell surface is activated by cleavage into the disulfide-linked F1 and F2 subunits. This fusion is pH independent and occurs directly at the outer cell membrane, and the F2 subunit was identifed as the major determinant of RSV host cell specificity. The trimer of F1-F2 interacts with glycoprotein G at the virion surface. Upon binding of G to heparan sulfate, the hydrophobic fusion peptide is unmasked and induces the fusion between host cell and virion membranes. Notably, RSV fusion protein is unique in that it is able to interact directly with heparan sulfate and therefore is sufficient for virus infection. Furthermore, the fusion protein is also able to trigger p53-dependent apoptosis.

References and Literature

Calculator

Reconstitution Calculator
Recombinant Proteins Dilute Calculator
Specific Activity Calculator
=
÷
X
=
X
(Unit/mg)
= 106 ÷
ng/mL

bottom

Tech Support

Please read the User Guide of Recombinant Proteins for more specific information.

Keywords

Human respiratory syncytial virus (RSV) (A2) Fusion glycoprotein/RSV-F Protein (His) HRSVgp8 F Protein recombinant recombinant-proteins proteins protein

 

TargetMol