Sodium ascorbate

Catalog Number: T6674
CAS Number: 134-03-2
Molecular Formula: C6H8O6·Na
Molecular Weight: 201.13

Description: Sodium Ascorbate is a more bioavailable form of vitamin C that is an alternative to taking ascorbic acid as a supplement.

Storage: 2 years -80°C in solvent; 3 years -20°C powder;

Solubility

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>9.9 mM</td>
</tr>
<tr>
<td>Water</td>
<td>198.9 mM</td>
</tr>
</tbody>
</table>

(< 1 mg/ml refers to the product slightly soluble or insoluble)

Receptor (IC50)

Others

In vitro Activity

Sodium ascorbate has a growth inhibiting action only at high concentrations in cultured human neoplastic cell lines MCF-7 (breast carcinoma), KB (oral epidermoid carcinoma), and AN3-CA (endometrial adenocarcinoma). Sodium ascorbate combined with vitamin K3 demonstrates a synergistic inhibition of cell growth at 10 to 50 times lower concentrations in cultured human neoplastic cell lines MCF-7, KB, and AN3-CA, at this level separately given vitamins are not toxic. This tumor cell growth inhibitory effect is completely suppressed by the addition of catalase to the culture medium containing vitamins C and K3, suggesting an excessive production of hydrogen peroxide as being implied in mechanisms responsible for the above-mentioned effects. [1] Sodium ascorbate combined with vitamin K3 results in a synergistic effect on growth inhibition in cultured human endometrial adenocarcinoma (AN3CA) cells. [2] Sodium ascorbate results in a rapid increase in the intracellular concentration of Ca2+ ions and subsequent apoptotic cell death in HL-60 cells, characterized by cell shrinkage, nuclear fragmentation and cleavage of internucleosomal DNA to yield fragments that are multiples of 180-200 base pairs, are induced. [3] Sodium ascorbate (100 μM) induces DNA single-strand breaks in human cells, Fibroblasts and Molt-4 cells are significantly more sensitive than lymphocytes. Sodium ascorbate (50 μM) results in significant cell loss in Molt-4 cells, but not in lymphocyte and fibroblast cultures. [4]

In vivo Activity

Tg rats treated with sodium L-ascorbate show a higher incidence of carcinoma (29.6%), compared to those without sodium L-ascorbate (15.4%). Independent of the sodium L-ascorbate treatment, transgenic rats exhibit various kinds of malignant tumors in various organs[5]. After 12 weeks of PEITC-treatment, both simple hyperplasia and papillary or nodular (PN) hyperplasia have developed in all animals, but the majority of these lesions have disappeared at week 48, irrespective of the sodium L-ascorbate-treatment. The same lesions after 24 weeks of PEITC-treatment have progressed to dysplasia and carcinoma, in a small number of cases by week 48, but enhancement by the sodium L-ascorbate-treatment is evident only with simple hyperplasias and PN hyperplasias in rats[6].

Animal Experiment

Animal Model: Tg rats

Reference

FOR RESEARCH PURPOSES ONLY. NOT FOR DIAGNOSTIC OR THERAPEUTIC USE.
Information for product storage and handling is indicated on the product datasheet. Targetmol products are stable for long term under the recommended storage conditions. Our products may be shipped under different conditions as many of them are stable in the short-term at higher or even room temperatures. We ensure that the product is shipped under conditions that will maintain the quality of the reagents. Upon receipt of the product, please follow the storage recommendations on the product data sheet.